A variation of my Mike Bostock’s California population density map using block groups rather than census tracts. The example exhibits how useful the Census API is: the prepublish script here can automatically grabs the list of counties for the desired state and then the population data for each block group.
<!DOCTYPE html>
<svg width="960" height="1100"></svg>
<script src="https://d3js.org/d3.v4.min.js"></script>
<script src="https://d3js.org/d3-scale-chromatic.v1.min.js"></script>
<script src="https://d3js.org/topojson.v2.min.js"></script>
<script>
var svg = d3.select("svg"),
width = +svg.attr("width"),
height = +svg.attr("height");
var path = d3.geoPath();
var color = d3.scaleThreshold()
.domain([1, 10, 50, 200, 500, 1000, 2000, 4000])
.range(d3.schemeOrRd[9]);
var x = d3.scaleSqrt()
.domain([0, 4500])
.rangeRound([440, 950]);
var g = svg.append("g")
.attr("class", "key")
.attr("transform", "translate(0,40)");
g.selectAll("rect")
.data(color.range().map(function(d) {
d = color.invertExtent(d);
if (d[0] == null) d[0] = x.domain()[0];
if (d[1] == null) d[1] = x.domain()[1];
return d;
}))
.enter().append("rect")
.attr("height", 8)
.attr("x", function(d) { return x(d[0]); })
.attr("width", function(d) { return x(d[1]) - x(d[0]); })
.attr("fill", function(d) { return color(d[0]); });
g.append("text")
.attr("class", "caption")
.attr("x", x.range()[0])
.attr("y", -6)
.attr("fill", "#000")
.attr("text-anchor", "start")
.attr("font-weight", "bold")
.text("Population per square mile");
g.call(d3.axisBottom(x)
.tickSize(13)
.tickValues(color.domain()))
.select(".domain")
.remove();
d3.json("topo.json", function(error, topology) {
if (error) throw error;
svg.append("g")
.selectAll("path")
.data(topojson.feature(topology, topology.objects.blockgroups).features)
.enter().append("path")
.attr("fill", function(d) { return d3.schemeOrRd[9][d.id]; })
.attr("d", path);
svg.append("path")
.datum(topojson.feature(topology, topology.objects.counties))
.attr("fill", "none")
.attr("stroke", "#000")
.attr("stroke-opacity", 0.3)
.attr("d", path);
});
</script>
{
"private": true,
"license": "gpl-3.0",
"author": {
"name": "Mike Bostock",
"url": "https://bost.ocks.org/mike"
},
"scripts": {
"prepublish": "bash prepublish"
},
"devDependencies": {
"d3-scale": "^1.0.4",
"d3-scale-chromatic": "^1.1.0",
"d3-geo-projection": "^1.2.1",
"ndjson-cli": "^0.3.0",
"shapefile": "^0.5.9",
"topojson-server": "^2.0.0",
"topojson-client": "^2.1.0",
"topojson-simplify": "^2.0.0"
}
}
#!/bin/bash
# EPSG:3310 California Albers
# Albers adapted for Washington
PROJECTION='d3.geoAlbers().parallels([47, 48]).rotate([120, 0])'
# The state FIPS code. (Washington)
STATE=53
# The ACS 5-Year Estimate vintage.
YEAR=2014
# The display size.
WIDTH=960
HEIGHT=1100
# Download the census block group boundaries.
# Extract the shapefile (.shp) and dBASE (.dbf).
if [ ! -f cb_${YEAR}_${STATE}_bg_500k.shp ]; then
curl -o cb_${YEAR}_${STATE}_bg_500k.zip \
"https://www2.census.gov/geo/tiger/GENZ${YEAR}/shp/cb_${YEAR}_${STATE}_bg_500k.zip"
unzip -o \
cb_${YEAR}_${STATE}_bg_500k.zip \
cb_${YEAR}_${STATE}_bg_500k.shp \
cb_${YEAR}_${STATE}_bg_500k.dbf
fi
# Download the list of counties.
if [ ! -f cb_${YEAR}_${STATE}_counties.json ]; then
curl -o cb_${YEAR}_${STATE}_counties.json \
"http://api.census.gov/data/${YEAR}/acs5?get=NAME&for=county:*&in=state:${STATE}&key=${CENSUS_KEY}"
fi
# Download the census block group population estimates for each county.
if [ ! -f cb_${YEAR}_${STATE}_bg_B01003.ndjson ]; then
for COUNTY in $(ndjson-cat cb_${YEAR}_${STATE}_counties.json \
| ndjson-split \
| tail -n +2 \
| ndjson-map 'd[2]' \
| cut -c 2-4); do
echo ${COUNTY}
if [ ! -f cb_${YEAR}_${STATE}_${COUNTY}_bg_B01003.json ]; then
curl -o cb_${YEAR}_${STATE}_${COUNTY}_bg_B01003.json \
"http://api.census.gov/data/${YEAR}/acs5?get=B01003_001E&for=block+group:*&in=state:${STATE}+county:${COUNTY}&key=${CENSUS_KEY}"
fi
ndjson-cat cb_${YEAR}_${STATE}_${COUNTY}_bg_B01003.json \
| ndjson-split \
| tail -n +2 \
>> cb_${YEAR}_${STATE}_bg_B01003.ndjson
done
fi
# 1. Convert to GeoJSON.
# 2. Project.
# 3. Join with the census data.
# 4. Compute the population density.
# 5. Simplify.
# 6. Compute the county borders.
geo2topo -n \
blockgroups=<(ndjson-join 'd.id' \
<(shp2json cb_${YEAR}_${STATE}_bg_500k.shp \
| geoproject "${PROJECTION}.fitExtent([[10, 10], [${WIDTH} - 10, ${HEIGHT} - 10]], d)" \
| ndjson-split 'd.features' \
| ndjson-map 'd.id = d.properties.GEOID.slice(2), d') \
<(ndjson-map < cb_${YEAR}_${STATE}_bg_B01003.ndjson '{id: d[2] + d[3] + d[4], B01003: +d[0]}') \
| ndjson-map -r d3=d3-array 'd[0].properties = {density: d3.bisect([1, 10, 50, 200, 500, 1000, 2000, 4000], (d[1].B01003 / d[0].properties.ALAND || 0) * 2589975.2356)}, d[0]') \
| topomerge -k 'd.id.slice(0, 3)' counties=blockgroups \
| topomerge --mesh -f 'a !== b' counties=counties \
| topomerge -k 'd.properties.density' blockgroups=blockgroups \
| toposimplify -p 1 -f \
> topo.json
# Re-compute the topology as a further optimization.
# This consolidates unique sequences of arcs.
# https://github.com/topojson/topojson-simplify/issues/4
topo2geo \
< topo.json \
blockgroups=blockgroups.json \
counties=counties.json
geo2topo \
blockgroups=blockgroups.json \
counties=counties.json \
| topoquantize 1e5 \
> topo.json
rm blockgroups.json counties.json