booths.js
var width = 1960,
height = 1000;
var ausCenter = [132.5, -26.5];
var parallels = [-36, -18];
var projection = d3.geo.albers()
.translate([width / 2, height / 2])
.scale(1100)
.rotate([-ausCenter[0], 0])
.center([0, ausCenter[1]])
.parallels(parallels)
.precision(0);
var path = d3.geo.path()
.projection(projection)
.pointRadius(1.5);
var svg = d3.select("body").append("svg")
.attr("width", width)
.attr("height", height);
var zoom = d3.behavior.zoom()
.translate(projection.translate())
.scale(projection.scale())
.on("zoom", zoomed);
var g = svg.append("g")
.call(zoom);
var voronoi = d3.geom.voronoi();
queue()
.defer(d3.json, "australia.json")
.defer(d3.csv, "pollingbooths1.csv")
.await(ready);
var aus, polls, vpath, voronoi, booths, geo;
function ready(error, us, airports) {
airports.forEach(function(coord) {
coord[0] = +coord[0];
coord[1] = +coord[1];
});
geo = us;
booths = airports;
aus = g.selectAll("path.land")
.data(topojson.feature(us, us.objects.SED_2011_AUST).features)
.enter().append("path")
.attr("class", "land")
.attr("d", path);
polls = g.append("path")
.datum({type: "MultiPoint", coordinates: airports})
.attr("class", "points")
.attr("d", path);
vpath = g.selectAll("path.voronoi")
.data(voronoi(booths.map(projection)))
.enter().append("path")
.attr("class", "voronoi");
}
function zoomed() {
projection
.translate(d3.event.translate)
.scale(d3.event.scale);
aus.attr("d", path);
polls.attr("d", path);
}
function v() {
console.log("map", booths.map(projection));
console.log("vor", vor = voronoi(booths.map(projection)));
vpath.data(voronoi(booths.map(projection)))
.attr("d", function(d) { return "M" + d.join("L") + "Z"; })
}
function pp() {
var selection = d3.selectAll("path.voronoi");
booths.forEach(function(booth) {
selection.style("fill", function(d) { return pointInPolygon(booth, d.map(function(d) { return projection.invert(d); })) ? "red" : "yellow"; });
});
}
function pointInPolygon (point, vs) {
var xi, xj, yi, yj, i, j, intersect,
x = point[0],
y = point[1],
inside = false;
for (i = 0, j = vs.length - 1; i < vs.length; j = i++) {
xi = vs[i][0],
yi = vs[i][1],
xj = vs[j][0],
yj = vs[j][1],
intersect = ((yi > y) !== (yj > y))
&& (x < (xj - xi) * (y - yi) / (yj - yi) + xi);
if (intersect) inside = !inside;
}
return inside;
}
queue.js
(function() {
if (typeof module === "undefined") self.queue = queue;
else module.exports = queue;
queue.version = "1.0.4";
var slice = [].slice;
function queue(parallelism) {
var q,
tasks = [],
started = 0,
active = 0,
remaining = 0,
popping,
error = null,
await = noop,
all;
if (!parallelism) parallelism = Infinity;
function pop() {
while (popping = started < tasks.length && active < parallelism) {
var i = started++,
t = tasks[i],
a = slice.call(t, 1);
a.push(callback(i));
++active;
t[0].apply(null, a);
}
}
function callback(i) {
return function(e, r) {
--active;
if (error != null) return;
if (e != null) {
error = e;
started = remaining = NaN;
notify();
} else {
tasks[i] = r;
if (--remaining) popping || pop();
else notify();
}
};
}
function notify() {
if (error != null) await(error);
else if (all) await(error, tasks);
else await.apply(null, [error].concat(tasks));
}
return q = {
defer: function() {
if (!error) {
tasks.push(arguments);
++remaining;
pop();
}
return q;
},
await: function(f) {
await = f;
all = false;
if (!remaining) notify();
return q;
},
awaitAll: function(f) {
await = f;
all = true;
if (!remaining) notify();
return q;
}
};
}
function noop() {}
})();
topojson.js
topojson = (function() {
function merge(topology, arcs) {
var fragmentByStart = {},
fragmentByEnd = {};
arcs.forEach(function(i) {
var e = ends(i),
start = e[0],
end = e[1],
f, g;
if (f = fragmentByEnd[start]) {
delete fragmentByEnd[f.end];
f.push(i);
f.end = end;
if (g = fragmentByStart[end]) {
delete fragmentByStart[g.start];
var fg = g === f ? f : f.concat(g);
fragmentByStart[fg.start = f.start] = fragmentByEnd[fg.end = g.end] = fg;
} else if (g = fragmentByEnd[end]) {
delete fragmentByStart[g.start];
delete fragmentByEnd[g.end];
var fg = f.concat(g.map(function(i) { return ~i; }).reverse());
fragmentByStart[fg.start = f.start] = fragmentByEnd[fg.end = g.start] = fg;
} else {
fragmentByStart[f.start] = fragmentByEnd[f.end] = f;
}
} else if (f = fragmentByStart[end]) {
delete fragmentByStart[f.start];
f.unshift(i);
f.start = start;
if (g = fragmentByEnd[start]) {
delete fragmentByEnd[g.end];
var gf = g === f ? f : g.concat(f);
fragmentByStart[gf.start = g.start] = fragmentByEnd[gf.end = f.end] = gf;
} else if (g = fragmentByStart[start]) {
delete fragmentByStart[g.start];
delete fragmentByEnd[g.end];
var gf = g.map(function(i) { return ~i; }).reverse().concat(f);
fragmentByStart[gf.start = g.end] = fragmentByEnd[gf.end = f.end] = gf;
} else {
fragmentByStart[f.start] = fragmentByEnd[f.end] = f;
}
} else if (f = fragmentByStart[start]) {
delete fragmentByStart[f.start];
f.unshift(~i);
f.start = end;
if (g = fragmentByEnd[end]) {
delete fragmentByEnd[g.end];
var gf = g === f ? f : g.concat(f);
fragmentByStart[gf.start = g.start] = fragmentByEnd[gf.end = f.end] = gf;
} else if (g = fragmentByStart[end]) {
delete fragmentByStart[g.start];
delete fragmentByEnd[g.end];
var gf = g.map(function(i) { return ~i; }).reverse().concat(f);
fragmentByStart[gf.start = g.end] = fragmentByEnd[gf.end = f.end] = gf;
} else {
fragmentByStart[f.start] = fragmentByEnd[f.end] = f;
}
} else if (f = fragmentByEnd[end]) {
delete fragmentByEnd[f.end];
f.push(~i);
f.end = start;
if (g = fragmentByEnd[start]) {
delete fragmentByStart[g.start];
var fg = g === f ? f : f.concat(g);
fragmentByStart[fg.start = f.start] = fragmentByEnd[fg.end = g.end] = fg;
} else if (g = fragmentByStart[start]) {
delete fragmentByStart[g.start];
delete fragmentByEnd[g.end];
var fg = f.concat(g.map(function(i) { return ~i; }).reverse());
fragmentByStart[fg.start = f.start] = fragmentByEnd[fg.end = g.start] = fg;
} else {
fragmentByStart[f.start] = fragmentByEnd[f.end] = f;
}
} else {
f = [i];
fragmentByStart[f.start = start] = fragmentByEnd[f.end = end] = f;
}
});
function ends(i) {
var arc = topology.arcs[i], p0 = arc[0], p1 = [0, 0];
arc.forEach(function(dp) { p1[0] += dp[0], p1[1] += dp[1]; });
return [p0, p1];
}
var fragments = [];
for (var k in fragmentByEnd) fragments.push(fragmentByEnd[k]);
return fragments;
}
function mesh(topology, o, filter) {
var arcs = [];
if (arguments.length > 1) {
var geomsByArc = [],
geom;
function arc(i) {
if (i < 0) i = ~i;
(geomsByArc[i] || (geomsByArc[i] = [])).push(geom);
}
function line(arcs) {
arcs.forEach(arc);
}
function polygon(arcs) {
arcs.forEach(line);
}
function geometry(o) {
if (o.type === "GeometryCollection") o.geometries.forEach(geometry);
else if (o.type in geometryType) {
geom = o;
geometryType[o.type](o.arcs);
}
}
var geometryType = {
LineString: line,
MultiLineString: polygon,
Polygon: polygon,
MultiPolygon: function(arcs) { arcs.forEach(polygon); }
};
geometry(o);
geomsByArc.forEach(arguments.length < 3
? function(geoms, i) { arcs.push(i); }
: function(geoms, i) { if (filter(geoms[0], geoms[geoms.length - 1])) arcs.push(i); });
} else {
for (var i = 0, n = topology.arcs.length; i < n; ++i) arcs.push(i);
}
return object(topology, {type: "MultiLineString", arcs: merge(topology, arcs)});
}
function featureOrCollection(topology, o) {
return o.type === "GeometryCollection" ? {
type: "FeatureCollection",
features: o.geometries.map(function(o) { return feature(topology, o); })
} : feature(topology, o);
}
function feature(topology, o) {
var f = {
type: "Feature",
id: o.id,
properties: o.properties || {},
geometry: object(topology, o)
};
if (o.id == null) delete f.id;
return f;
}
function object(topology, o) {
var absolute = transformAbsolute(topology.transform),
arcs = topology.arcs;
function arc(i, points) {
if (points.length) points.pop();
for (var a = arcs[i < 0 ? ~i : i], k = 0, n = a.length, p; k < n; ++k) {
points.push(p = a[k].slice());
absolute(p, k);
}
if (i < 0) reverse(points, n);
}
function point(p) {
p = p.slice();
absolute(p, 0);
return p;
}
function line(arcs) {
var points = [];
for (var i = 0, n = arcs.length; i < n; ++i) arc(arcs[i], points);
if (points.length < 2) points.push(points[0].slice());
return points;
}
function ring(arcs) {
var points = line(arcs);
while (points.length < 4) points.push(points[0].slice());
return points;
}
function polygon(arcs) {
return arcs.map(ring);
}
function geometry(o) {
var t = o.type;
return t === "GeometryCollection" ? {type: t, geometries: o.geometries.map(geometry)}
: t in geometryType ? {type: t, coordinates: geometryType[t](o)}
: null;
}
var geometryType = {
Point: function(o) { return point(o.coordinates); },
MultiPoint: function(o) { return o.coordinates.map(point); },
LineString: function(o) { return line(o.arcs); },
MultiLineString: function(o) { return o.arcs.map(line); },
Polygon: function(o) { return polygon(o.arcs); },
MultiPolygon: function(o) { return o.arcs.map(polygon); }
};
return geometry(o);
}
function reverse(array, n) {
var t, j = array.length, i = j - n; while (i < --j) t = array[i], array[i++] = array[j], array[j] = t;
}
function bisect(a, x) {
var lo = 0, hi = a.length;
while (lo < hi) {
var mid = lo + hi >>> 1;
if (a[mid] < x) lo = mid + 1;
else hi = mid;
}
return lo;
}
function neighbors(objects) {
var indexesByArc = {},
neighbors = objects.map(function() { return []; });
function line(arcs, i) {
arcs.forEach(function(a) {
if (a < 0) a = ~a;
var o = indexesByArc[a];
if (o) o.push(i);
else indexesByArc[a] = [i];
});
}
function polygon(arcs, i) {
arcs.forEach(function(arc) { line(arc, i); });
}
function geometry(o, i) {
if (o.type === "GeometryCollection") o.geometries.forEach(function(o) { geometry(o, i); });
else if (o.type in geometryType) geometryType[o.type](o.arcs, i);
}
var geometryType = {
LineString: line,
MultiLineString: polygon,
Polygon: polygon,
MultiPolygon: function(arcs, i) { arcs.forEach(function(arc) { polygon(arc, i); }); }
};
objects.forEach(geometry);
for (var i in indexesByArc) {
for (var indexes = indexesByArc[i], m = indexes.length, j = 0; j < m; ++j) {
for (var k = j + 1; k < m; ++k) {
var ij = indexes[j], ik = indexes[k], n;
if ((n = neighbors[ij])[i = bisect(n, ik)] !== ik) n.splice(i, 0, ik);
if ((n = neighbors[ik])[i = bisect(n, ij)] !== ij) n.splice(i, 0, ij);
}
}
}
return neighbors;
}
function presimplify(topology, triangleArea) {
var absolute = transformAbsolute(topology.transform),
relative = transformRelative(topology.transform),
heap = minHeap(compareArea),
maxArea = 0,
triangle;
if (!triangleArea) triangleArea = cartesianArea;
topology.arcs.forEach(function(arc) {
var triangles = [];
arc.forEach(absolute);
for (var i = 1, n = arc.length - 1; i < n; ++i) {
triangle = arc.slice(i - 1, i + 2);
triangle[1][2] = triangleArea(triangle);
triangles.push(triangle);
heap.push(triangle);
}
arc[0][2] = arc[n][2] = Infinity;
for (var i = 0, n = triangles.length; i < n; ++i) {
triangle = triangles[i];
triangle.previous = triangles[i - 1];
triangle.next = triangles[i + 1];
}
});
while (triangle = heap.pop()) {
var previous = triangle.previous,
next = triangle.next;
if (triangle[1][2] < maxArea) triangle[1][2] = maxArea;
else maxArea = triangle[1][2];
if (previous) {
previous.next = next;
previous[2] = triangle[2];
update(previous);
}
if (next) {
next.previous = previous;
next[0] = triangle[0];
update(next);
}
}
topology.arcs.forEach(function(arc) {
arc.forEach(relative);
});
function update(triangle) {
heap.remove(triangle);
triangle[1][2] = triangleArea(triangle);
heap.push(triangle);
}
return topology;
};
function cartesianArea(triangle) {
return Math.abs(
(triangle[0][0] - triangle[2][0]) * (triangle[1][1] - triangle[0][1])
- (triangle[0][0] - triangle[1][0]) * (triangle[2][1] - triangle[0][1])
);
}
function compareArea(a, b) {
return a[1][2] - b[1][2];
}
function minHeap(compare) {
var heap = {},
array = [];
heap.push = function() {
for (var i = 0, n = arguments.length; i < n; ++i) {
var object = arguments[i];
up(object.index = array.push(object) - 1);
}
return array.length;
};
heap.pop = function() {
var removed = array[0],
object = array.pop();
if (array.length) {
array[object.index = 0] = object;
down(0);
}
return removed;
};
heap.remove = function(removed) {
var i = removed.index,
object = array.pop();
if (i !== array.length) {
array[object.index = i] = object;
(compare(object, removed) < 0 ? up : down)(i);
}
return i;
};
function up(i) {
var object = array[i];
while (i > 0) {
var up = ((i + 1) >> 1) - 1,
parent = array[up];
if (compare(object, parent) >= 0) break;
array[parent.index = i] = parent;
array[object.index = i = up] = object;
}
}
function down(i) {
var object = array[i];
while (true) {
var right = (i + 1) << 1,
left = right - 1,
down = i,
child = array[down];
if (left < array.length && compare(array[left], child) < 0) child = array[down = left];
if (right < array.length && compare(array[right], child) < 0) child = array[down = right];
if (down === i) break;
array[child.index = i] = child;
array[object.index = i = down] = object;
}
}
return heap;
}
function transformAbsolute(transform) {
if (!transform) return noop;
var x0,
y0,
kx = transform.scale[0],
ky = transform.scale[1],
dx = transform.translate[0],
dy = transform.translate[1];
return function(point, i) {
if (!i) x0 = y0 = 0;
point[0] = (x0 += point[0]) * kx + dx;
point[1] = (y0 += point[1]) * ky + dy;
};
}
function transformRelative(transform) {
if (!transform) return noop;
var x0,
y0,
kx = transform.scale[0],
ky = transform.scale[1],
dx = transform.translate[0],
dy = transform.translate[1];
return function(point, i) {
if (!i) x0 = y0 = 0;
var x1 = (point[0] - dx) / kx | 0,
y1 = (point[1] - dy) / ky | 0;
point[0] = x1 - x0;
point[1] = y1 - y0;
x0 = x1;
y0 = y1;
};
}
function noop() {}
return {
version: "1.4.0",
mesh: mesh,
feature: featureOrCollection,
neighbors: neighbors,
presimplify: presimplify
};
})();