block by bmershon 7938f064dc2202364cdd52acbd24805d

Multiplicative Group

Full Screen

The orders of every element of the multiplicative group of remainders modulo 11.

index.html

<!DOCTYPE html>
<meta charset="utf-8">
<script src="https://d3js.org/d3.v4.min.js"></script>
<body></body>
<script>

let n = 11;

let worker = new Worker("worker.js");

worker.onmessage = function(event) {
  switch (event.data.type) {
    case "end": return ended(event.data);
  }
};

worker.postMessage({'n': n});

function ended(data) {
  let matrix = data.matrix,
      orders = data.orders;

  // Add group elements down the left side of the table.
  matrix = matrix.map((row, i) => {
    return [i + 1].concat(row).concat([orders[i]]);
  });

  // Add group elements as top row.
  matrix.unshift(d3.range(0, n + 1));

  // Top left corner is empty.
  matrix[0][0] = "";

  // Top right corner is empty.
  matrix[0][n] = "order";
  
  let tr = d3.select("body")
      .style("font-family", "helvetica")
    .append("table")
      .style("text-align", "center")
    .selectAll("tr")
    .data(matrix)
    .enter().append("tr");

  let td = tr.selectAll("td")
    .data(d => d)
    .enter().append("td")
      .attr("width", "40px")
      .attr("height", "40px")
      .style("font-size", "24px")
      .style("font-weight", (d, i) => {
        switch(i) {
          case 0: // Left-most column.
            return "normal";
            break;
          case n: // Right-most column
            return "bolder";
            break;
          default: // All other entries.
            return "lighter";
            break;
        }
      })
      .style("color", (d, i) => {
        return (i === n) ? "rgb(240, 0, 0)" : null;
      })
      .text(d => d);

  // Style the top row.
  d3.selectAll("tr").filter((d, i) => i === 0)
    .selectAll("td")
      .style("color", "normal");
}
</script>

worker.js

onmessage = function(event) {
  let n = event.data.n,
      matrix = multiplicative_matrix(n),
      orders = matrix.map((d, i) => {
        return order(v(i), matrix);
      });

  postMessage({
    "type": "end",
    "matrix": matrix,
    "orders": orders
  });
}

// The value correction for a zero-based index system.
function v(index) { return index + 1; }

// Returns a square matrix[row][column] with n - 1 rows,
// each of which is a permutation of remainders modulo n.
// The first row corresponds to the element 1; the last row
// corresponds to the element n - 1.
function multiplicative_matrix(n) {
  let matrix = [];

  for (let i = 0; i < n - 1; i++) {
    matrix.push(permutation(v(i), n));
  }

  return matrix;
}

// Returns an array representing a permutation of remainders modulo n.
function permutation(a, n) {
  let row = new Array(n - 1);

  for (i = 0; i < n - 1; i++) {
    row[i] = v(i);
  }

  return row.map((d) => {
    return (a * d) % n;
  });
}

// Precondition: The matrix representing the modular multiplication
// table must have been constructed for a prime value n (e.g. 17).
// Returns the order of the group element a, using the matrix
// a to iteratively look up the result of successively applying a.
function order(a, matrix) {
  let count = 1,
      n = matrix[0][matrix.length - 1] + 1,
      current = a;

  while (current !== 1) {
    // Zero-based index; subtract one from actual value.
    current = matrix[current - 1][a - 1] % n;
    count++;
  }

  return count;
}