block by enjalot 02ac156db28e61ff20bb

morph experiment #2

Full Screen

forked from enjalot‘s block: visfest logo - technical experiment #2

forked from enjalot‘s block: visfest logo - technical experiment #3

forked from enjalot‘s block: visfest logo - technical experiment #4

forked from enjalot‘s block: visfest logo - technical experiment #5

forked from enjalot‘s block: visfest experiment #3

forked from enjalot‘s block: morph experiment #1

index.html

<!DOCTYPE html>
<head>
  <meta charset="utf-8">
  <script src="https://cdnjs.cloudflare.com/ajax/libs/d3/3.5.5/d3.min.js"></script>
  <script src="sampler.js"></script>
  <script src="matrix.js"></script>
  <script src="polyk.js"></script>
</head>
<style>
  body {
    background-color: #192247;
  }
</style>


<body>
<svg width=960 height=500>
  <g transform="translate(-50,0)" opacity=0>
	<path id="outer" fill="none" stroke="#fff" stroke-width="0.8" stroke-miterlimit="10" d="M174.7,85c-24.5,14-57,18-45.8,45.7
		c9.5,23.4-28.2,15.1-45.8-25.7s20.5-65.8,45.8-65.8S196.7,72.5,174.7,85Z"/>
	<path id="inner" fill="none" stroke="#fff" stroke-width="0.8" stroke-miterlimit="10" d="M128.4,64.4c-1.9-0.1-5.9,6-5.9,6s-2.3-3.6-1-7.4
		c1.4-3.8,3.4-3.5,5-3.1C128.3,60.2,141.8,65.1,128.4,64.4z"/>
  </g>
  <g id="output">
  </g>
</svg>


  <script>
    var svg = d3.select("svg");
    var inner = d3.select("#inner")
    var outer = d3.select("#outer")
    var numSamples = 200;
    var numLines = 10;
    
    var scale = 4;
    
    var line = d3.svg.line()
      .x(function(d) { return d.x })
      .y(function(d) { return d.y })
      .interpolate("linear-closed")
      //.interpolate("cardinal-closed")
      .interpolate("basis-closed")
    
    var output = d3.select("#output")
    
    function interpolate(rotate) {
      var ins = Sampler.getSamples(inner.node(), numSamples);
      var outs = Sampler.getSamples(outer.node(), numSamples);
      //var ins = generateRect(20, 100, 99, 62, 63)
      //var outs = generateRect(20, 0, 0, 310, 310)
      var c = centroid(ins);
      // we center our shapes on 0,0 to rotate about center
      var zeroer = new Matrix()
        .translate(-c.x, -c.y) 
        .scale(1)
      var inmorph = new Matrix()
        .scale(scale)
        .rotate(rotate*0.1)
      var morpher = new Matrix()
        .scale(scale)
        .rotate(-rotate)
      var placer = new Matrix()
        .translate(450, 240)

      ins.forEach(function(d) {
        transformer(d, zeroer)
        transformer(d, inmorph)
        transformer(d, placer)
      })
      outs.forEach(function(d) {
        transformer(d, zeroer);
        transformer(d, morpher)
        transformer(d, placer);
      })
      
      //verify center
      transformer(c, zeroer)
      transformer(c, placer)

      output.append("circle")
      .attr({
        r: 3,
        fill: "orange",
        cx: c.x,
        cy: c.y
      })


      
      var rayd = generateRays(150);
            
      var inpoly = toPolyK(ins)
      var ind = rayd.map(function(ray) {
        var point = PolyK.Raycast(inpoly, c.x, c.y, ray.dx, ray.dy);
        return {
          x: c.x + ray.dx * point.dist,
          y: c.y + ray.dy * point.dist,
          perp: point.norm
        }
      })
      
      var outpoly = toPolyK(outs)
      var outd = rayd.map(function(ray) {
        var point = PolyK.Raycast(outpoly, c.x, c.y, ray.dx, ray.dy);
        return {
          x: c.x + ray.dx * point.dist,
          y: c.y + ray.dy * point.dist,
          perp: point.norm
        }
      })
      //console.log(outd)
      
      
      var outdc = output.selectAll("circle.outd")
      .data(outd)
      outdc.enter().append("circle").classed("outd", true)
      outdc.attr({
        r: 2,
        cx: function(d) { return d.x },
        cy: function(d) { return d.y },
        fill: "orange"
      })
      
      var lines = [];
      d3.range(numLines+1).forEach(function(index) {
        var samples = []
        var ratio = index / numLines;
        var i, x, y;
        var last;
        for(i = 0; i < ind.length; i++) {
          x = ind[i].x * (1 - ratio) + outd[i].x * (ratio);
          y = ind[i].y * (1 - ratio) + outd[i].y * (ratio);
          var p = {x: x, y: y}
          samples.push(p)
        }
        lines.push(samples)
      })
      
      // draw the lines we are interpolating along
      
      var interps = output.selectAll("line.interps")
      .data(ind)
      interps
      	.enter().append("line").classed("interps", true)
      interps
        .attr({
          x1: function(d,i) { return d.x },
          y1: function(d,i) { return d.y },
          x2: function(d,i) { return outd[i].x },
          y2: function(d,i) { return outd[i].y },
          stroke: "#cf6ccf",
          "stroke-width": 2,
          "stroke-opacity": 0.2
        })
        
      /*
      var blended = output.selectAll("path.blend")
      	.data(lines)
      blended
      	.enter()
      	.append("path").classed("blend", true)
      blended
        .attr({
          d: function(d) { return line(d) },
          fill: "none",
          stroke: "#ff005d",
          "stroke-width": 2,
        })
      */
      
      var groups = output.selectAll("g.line").data(lines)
      groups
      	.enter().append("g").classed("line", true)
      var circles = groups
        .selectAll("circle")
        .data(function(d) { return d })
      circles
        .enter().append("circle")
      circles
        .attr({
          r: 1,
          fill: "white",
          cx: function(d) { return d.x },
          cy: function(d) { return d.y }
        })
        
    }
    
    interpolate(90);

        

    function generateRect(num, x, y, width, height) {
      var points = []
      var sideNum = Math.floor(num/4) + 1;
      // top
      d3.range(sideNum).forEach(function(i) {
        points.push({ x: x + i * width/sideNum, y: y })
      })
      // right
      d3.range(sideNum).forEach(function(i) {
        points.push({ x: x + width, y: y + i * height/sideNum })
      })
      // bottom
      d3.range(sideNum).forEach(function(i) {
        points.push({ x: x + width - i * width/sideNum, y: y + height })
      })
      // left
      d3.range(sideNum).forEach(function(i) {
        points.push({ x: x, y: y + height - i * height/sideNum })
      })
      return points;
    }
    
    function generateRays(num) {
      var rays = d3.range(num).map(function(i) {
        var theta = i/num*2*Math.PI
        var dx = Math.sin(theta);
        var dy = Math.cos(theta); 
        return {dx: dx, dy: dy}
      })
      return rays;
    }
    
    var rot = electron()
      .cb(function(omega) {
        console.log("omega", omega)
        interpolate(omega*180/Math.PI)
      })
      .update(svg)
    
    // "electron" dial component.
    function electron() {
      var cx = 75;
      var cy = 75;
      var radius = 50;
      var dial
      var cb = function() {};
      
      var drag = d3.behavior.drag()
        .on("drag", function() {
          var mx = d3.mouse(this)[0];
          var my = d3.mouse(this)[1];
          var omega = Math.atan2(mx - cx, my - cy);
          var nx = radius * Math.sin(omega);
          var ny = radius * Math.cos(omega);
          dial.attr({
            cx: cx + nx,
            cy: cy + ny
          })
          if(cb) cb(omega)
        })
      
      this.update = function(g) {
        var ring = g.append("circle")
          .attr({
            cx: cx,
            cy: cy,
            r: radius,
            fill: "none",
            stroke: "#3dfbff",
            "stroke-width": 4
          });

        dial = g.append("circle")
          .attr({
            cx: cx + radius,
            cy: cy,
            r: 10,
            fill: "#3dfbff"
          });
        dial.call(drag);
      }
      this.cb = function(arg) {
        if(arg) {
          cb = arg;
          return this;
        }
        return this.cb;
      }
      return this;
    }
    
    
    
    
  </script>
</body>

matrix.js

function Matrix() {
      /* http://bl.ocks.org/enjalot/65ae9c0fc95337107448
       | a, b, tx |
       | c, d, ty |
       | 0, 0, 1  |
      */
      this.a = 1;
      this.b = 0;
      this.c = 0;
      this.d = 1;
      
      this.tx = 0;
      this.ty = 0;

     this.s = 1;
     this.ra = 1;
     this.rb = 0;
     this.rc = 0;
     this.rd = 1;
    }
    Matrix.prototype.scale = function(s) {
      this.s = s;
      this.a *= s;
      this.d *= s;
      return this;
    }
    Matrix.prototype.translate = function(x,y) {
      this.tx = x;
      this.ty = y;
      return this;
    }
    Matrix.prototype.rotate = function(deg) {
      var sin = Math.sin(deg*Math.PI/180).toFixed(3);
      var cos = Math.cos(deg*Math.PI/180).toFixed(3);
      this.ra = cos;
      this.rb = -sin;
      this.rc = sin;
      this.rd = cos;
      this.update();
      return this;
    }
    Matrix.prototype.update = function() {
      this.a = this.ra * this.s;
      this.b = this.rb * this.s;
      this.c = this.rc * this.s;
      this.d = this.rd * this.s;
      return this;
    }
 
    function transformer(p, m){
      // transform point
      var x = p.x || 0;
      var y = p.y || 0;
      var x2 = m.a*x + m.b*y + m.tx;
      var y2 = m.c*x + m.d*y + m.ty;
      p.x = x2;
      p.y = y2;
      //return {x:x2, y:y2};
    }

polyk.js


  /*
    PolyK library
    url: http://polyk.ivank.net
    Released under MIT licence.
    
    Copyright (c) 2012 - 2014 Ivan Kuckir

    Permission is hereby granted, free of charge, to any person
    obtaining a copy of this software and associated documentation
    files (the "Software"), to deal in the Software without
    restriction, including without limitation the rights to use,
    copy, modify, merge, publish, distribute, sublicense, and/or sell
    copies of the Software, and to permit persons to whom the
    Software is furnished to do so, subject to the following
    conditions:

    The above copyright notice and this permission notice shall be
    included in all copies or substantial portions of the Software.

    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
    OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
    NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
    HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
    WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
    FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
    OTHER DEALINGS IN THE SOFTWARE.
    
    19. 5. 2014 - Problem with slicing fixed.
  */

  var PolyK = {};
  
  /*
    Is Polygon self-intersecting?
    
    O(n^2)
  */
  
  PolyK.IsSimple = function(p)
  {
    var n = p.length>>1;
    if(n<4) return true;
    var a1 = new PolyK._P(), a2 = new PolyK._P();
    var b1 = new PolyK._P(), b2 = new PolyK._P();
    var c = new PolyK._P();
    
    for(var i=0; i<n; i++)
    {
      a1.x = p[2*i  ];
      a1.y = p[2*i+1];
      if(i==n-1)  { a2.x = p[0    ];  a2.y = p[1    ]; }
      else    { a2.x = p[2*i+2];  a2.y = p[2*i+3]; }
      
      for(var j=0; j<n; j++)
      {
        if(Math.abs(i-j) < 2) continue;
        if(j==n-1 && i==0) continue;
        if(i==n-1 && j==0) continue;
        
        b1.x = p[2*j  ];
        b1.y = p[2*j+1];
        if(j==n-1)  { b2.x = p[0    ];  b2.y = p[1    ]; }
        else    { b2.x = p[2*j+2];  b2.y = p[2*j+3]; }
        
        if(PolyK._GetLineIntersection(a1,a2,b1,b2,c) != null) return false;
      }
    }
    return true;
  }
  
  PolyK.IsConvex = function(p)
  {
    if(p.length<6) return true;
    var l = p.length - 4;
    for(var i=0; i<l; i+=2)
      if(!PolyK._convex(p[i], p[i+1], p[i+2], p[i+3], p[i+4], p[i+5])) return false;
    if(!PolyK._convex(p[l  ], p[l+1], p[l+2], p[l+3], p[0], p[1])) return false;
    if(!PolyK._convex(p[l+2], p[l+3], p[0  ], p[1  ], p[2], p[3])) return false;
    return true;
  }
  
  PolyK.GetArea = function(p)
  {
    if(p.length <6) return 0;
    var l = p.length - 2;
    var sum = 0;
    for(var i=0; i<l; i+=2)
      sum += (p[i+2]-p[i]) * (p[i+1]+p[i+3]);
    sum += (p[0]-p[l]) * (p[l+1]+p[1]);
    return - sum * 0.5;
  }
  
  PolyK.GetAABB = function(p)
  {
    var minx = Infinity; 
    var miny = Infinity;
    var maxx = -minx;
    var maxy = -miny;
    for(var i=0; i<p.length; i+=2)
    {
      minx = Math.min(minx, p[i  ]);
      maxx = Math.max(maxx, p[i  ]);
      miny = Math.min(miny, p[i+1]);
      maxy = Math.max(maxy, p[i+1]);
    }
    return {x:minx, y:miny, width:maxx-minx, height:maxy-miny};
  }
  
  PolyK.Reverse = function(p)
  {
    var np = [];
    for(var j=p.length-2; j>=0; j-=2)  np.push(p[j], p[j+1])
    return np;
  }
  

  PolyK.Triangulate = function(p)
  {
    var n = p.length>>1;
    if(n<3) return [];
    var tgs = [];
    var avl = [];
    for(var i=0; i<n; i++) avl.push(i);
    
    var i = 0;
    var al = n;
    while(al > 3)
    {
      var i0 = avl[(i+0)%al];
      var i1 = avl[(i+1)%al];
      var i2 = avl[(i+2)%al];
      
      var ax = p[2*i0],  ay = p[2*i0+1];
      var bx = p[2*i1],  by = p[2*i1+1];
      var cx = p[2*i2],  cy = p[2*i2+1];
      
      var earFound = false;
      if(PolyK._convex(ax, ay, bx, by, cx, cy))
      {
        earFound = true;
        for(var j=0; j<al; j++)
        {
          var vi = avl[j];
          if(vi==i0 || vi==i1 || vi==i2) continue;
          if(PolyK._PointInTriangle(p[2*vi], p[2*vi+1], ax, ay, bx, by, cx, cy)) {earFound = false; break;}
        }
      }
      if(earFound)
      {
        tgs.push(i0, i1, i2);
        avl.splice((i+1)%al, 1);
        al--;
        i= 0;
      }
      else if(i++ > 3*al) break;    // no convex angles :(
    }
    tgs.push(avl[0], avl[1], avl[2]);
    return tgs;
  }
  
  PolyK.ContainsPoint = function(p, px, py)
  {
    var n = p.length>>1;
    var ax, ay = p[2*n-3]-py, bx = p[2*n-2]-px, by = p[2*n-1]-py;
    
    //var lup = by > ay;
    for(var i=0; i<n; i++)
    {
      ax = bx;  ay = by;
      bx = p[2*i  ] - px;
      by = p[2*i+1] - py;
      if(ay==by) continue;
      lup = by>ay;
    }
    
    var depth = 0;
    for(var i=0; i<n; i++)
    {
      ax = bx;  ay = by;
      bx = p[2*i  ] - px;
      by = p[2*i+1] - py;
      if(ay< 0 && by< 0) continue;  // both "up" or both "down"
      if(ay> 0 && by> 0) continue;  // both "up" or both "down"
      if(ax< 0 && bx< 0) continue;  // both points on the left
      
      if(ay==by && Math.min(ax,bx)<=0) return true;
      if(ay==by) continue;
      
      var lx = ax + (bx-ax)*(-ay)/(by-ay);
      if(lx==0) return true;      // point on edge
      if(lx> 0) depth++;
      if(ay==0 &&  lup && by>ay) depth--; // hit vertex, both up
      if(ay==0 && !lup && by<ay) depth--; // hit vertex, both down
      lup = by>ay;
    }
    //console.log(depth);
    return (depth & 1) == 1;
  }
  
  PolyK.Slice = function(p, ax, ay, bx, by)
  {
    if(PolyK.ContainsPoint(p, ax, ay) || PolyK.ContainsPoint(p, bx, by)) return [p.slice(0)];

    var a = new PolyK._P(ax, ay);
    var b = new PolyK._P(bx, by);
    var iscs = [];  // intersections
    var ps = [];  // points
    for(var i=0; i<p.length; i+=2) ps.push(new PolyK._P(p[i], p[i+1]));
    
    for(var i=0; i<ps.length; i++)
    {
      var isc = new PolyK._P(0,0);
      isc = PolyK._GetLineIntersection(a, b, ps[i], ps[(i+1)%ps.length], isc);
      var fisc = iscs[0];
      var lisc = iscs[iscs.length-1];
      if(isc && (fisc==null || PolyK._P.dist(isc,fisc)>1e-10) && (lisc==null || PolyK._P.dist(isc,lisc)>1e-10 ) )//&& (isc.x!=ps[i].x || isc.y!=ps[i].y) )
      {
        isc.flag = true;
        iscs.push(isc);
        ps.splice(i+1,0,isc);
        i++;
      }
    }
    
    if(iscs.length <2) return [p.slice(0)];
    var comp = function(u,v) { return PolyK._P.dist(a,u) - PolyK._P.dist(a,v); }
    iscs.sort(comp);
    
    //console.log("Intersections: "+iscs.length, JSON.stringify(iscs));
    
    var pgs = [];
    var dir = 0;
    while(iscs.length > 0)
    {
      var n = ps.length;
      var i0 = iscs[0];
      var i1 = iscs[1];
      //if(i0.x==i1.x && i0.y==i1.y) { iscs.splice(0,2); continue;}
      var ind0 = ps.indexOf(i0);
      var ind1 = ps.indexOf(i1);
      var solved = false;
      
      //console.log(i0, i1);
      
      if(PolyK._firstWithFlag(ps, ind0) == ind1) solved = true;
      else
      {
        i0 = iscs[1];
        i1 = iscs[0];
        ind0 = ps.indexOf(i0);
        ind1 = ps.indexOf(i1);
        if(PolyK._firstWithFlag(ps, ind0) == ind1) solved = true;
      }
      if(solved)
      {
        dir--;
        var pgn = PolyK._getPoints(ps, ind0, ind1);
        pgs.push(pgn);
        ps = PolyK._getPoints(ps, ind1, ind0);
        i0.flag = i1.flag = false;
        iscs.splice(0,2);
        if(iscs.length == 0) pgs.push(ps);
      }
      else { dir++; iscs.reverse(); }
      if(dir>1) break;
    }
    var result = [];
    for(var i=0; i<pgs.length; i++)
    {
      var pg = pgs[i];
      var npg = [];
      for(var j=0; j<pg.length; j++) npg.push(pg[j].x, pg[j].y);
      result.push(npg);
    }
    return result;
  }
  
  PolyK.Raycast = function(p, x, y, dx, dy, isc)
  {
    var l = p.length - 2;
    var tp = PolyK._tp;
    var a1 = tp[0], a2 = tp[1], 
    b1 = tp[2], b2 = tp[3], c = tp[4];
    a1.x = x; a1.y = y;
    a2.x = x+dx; a2.y = y+dy;
    
    if(isc==null) isc = {dist:0, edge:0, norm:{x:0, y:0}, refl:{x:0, y:0}};
    isc.dist = Infinity;
    
    for(var i=0; i<l; i+=2)
    {
      b1.x = p[i  ];  b1.y = p[i+1];
      b2.x = p[i+2];  b2.y = p[i+3];
      var nisc = PolyK._RayLineIntersection(a1, a2, b1, b2, c);
      if(nisc) PolyK._updateISC(dx, dy, a1, b1, b2, c, i/2, isc);
    }
    b1.x = b2.x;  b1.y = b2.y;
    b2.x = p[0];  b2.y = p[1];
    var nisc = PolyK._RayLineIntersection(a1, a2, b1, b2, c);
    if(nisc) PolyK._updateISC(dx, dy, a1, b1, b2, c, (p.length/2)-1, isc);
    
    return (isc.dist != Infinity) ? isc : null;
  }
  
  PolyK.ClosestEdge = function(p, x, y, isc)
  {
    var l = p.length - 2;
    var tp = PolyK._tp;
    var a1 = tp[0], 
    b1 = tp[2], b2 = tp[3], c = tp[4];
    a1.x = x; a1.y = y;
    
    if(isc==null) isc = {dist:0, edge:0, point:{x:0, y:0}, norm:{x:0, y:0}};
    isc.dist = Infinity;
    
    for(var i=0; i<l; i+=2)
    {
      b1.x = p[i  ];  b1.y = p[i+1];
      b2.x = p[i+2];  b2.y = p[i+3];
      PolyK._pointLineDist(a1, b1, b2, i>>1, isc);
    }
    b1.x = b2.x;  b1.y = b2.y;
    b2.x = p[0];  b2.y = p[1];
    PolyK._pointLineDist(a1, b1, b2, l>>1, isc);
    
    var idst = 1/isc.dist;
    isc.norm.x = (x-isc.point.x)*idst;
    isc.norm.y = (y-isc.point.y)*idst;
    return isc;
  }
  
  PolyK._pointLineDist = function(p, a, b, edge, isc)
  {
    var x = p.x, y = p.y, x1 = a.x, y1 = a.y, x2 = b.x, y2 = b.y;
    
    var A = x - x1;
    var B = y - y1;
    var C = x2 - x1;
    var D = y2 - y1;

    var dot = A * C + B * D;
    var len_sq = C * C + D * D;
    var param = dot / len_sq;

    var xx, yy;

    if (param < 0 || (x1 == x2 && y1 == y2)) {
      xx = x1;
      yy = y1;
    }
    else if (param > 1) {
      xx = x2;
      yy = y2;
    }
    else {
      xx = x1 + param * C;
      yy = y1 + param * D;
    }

    var dx = x - xx;
    var dy = y - yy;
    var dst = Math.sqrt(dx * dx + dy * dy);
    if(dst<isc.dist)
    {
      isc.dist = dst;
      isc.edge = edge;
      isc.point.x = xx;
      isc.point.y = yy;
    }
  }
  
  PolyK._updateISC = function(dx, dy, a1, b1, b2, c, edge, isc)
  {
    var nrl = PolyK._P.dist(a1, c);
    if(nrl<isc.dist)
    {
      var ibl = 1/PolyK._P.dist(b1, b2);
      var nx = -(b2.y-b1.y)*ibl;
      var ny =  (b2.x-b1.x)*ibl;
      var ddot = 2*(dx*nx+dy*ny);
      isc.dist = nrl;
      isc.norm.x = nx;  
      isc.norm.y = ny; 
      isc.refl.x = -ddot*nx+dx;
      isc.refl.y = -ddot*ny+dy;
      isc.edge = edge;
    }
  }
  
  PolyK._getPoints = function(ps, ind0, ind1)
  {
    var n = ps.length;
    var nps = [];
    if(ind1<ind0) ind1 += n;
    for(var i=ind0; i<= ind1; i++) nps.push(ps[i%n]);
    return nps;
  }
  
  PolyK._firstWithFlag = function(ps, ind)
  {
    var n = ps.length;
    while(true)
    {
      ind = (ind+1)%n;
      if(ps[ind].flag) return ind;
    }
  }
  
  PolyK._PointInTriangle = function(px, py, ax, ay, bx, by, cx, cy)
  {
    var v0x = cx-ax;
    var v0y = cy-ay;
    var v1x = bx-ax;
    var v1y = by-ay;
    var v2x = px-ax;
    var v2y = py-ay;
    
    var dot00 = v0x*v0x+v0y*v0y;
    var dot01 = v0x*v1x+v0y*v1y;
    var dot02 = v0x*v2x+v0y*v2y;
    var dot11 = v1x*v1x+v1y*v1y;
    var dot12 = v1x*v2x+v1y*v2y;
    
    var invDenom = 1 / (dot00 * dot11 - dot01 * dot01);
    var u = (dot11 * dot02 - dot01 * dot12) * invDenom;
    var v = (dot00 * dot12 - dot01 * dot02) * invDenom;

    // Check if point is in triangle
    return (u >= 0) && (v >= 0) && (u + v < 1);
  }
  
  PolyK._RayLineIntersection = function(a1, a2, b1, b2, c)
  {
    var dax = (a1.x-a2.x), dbx = (b1.x-b2.x);
    var day = (a1.y-a2.y), dby = (b1.y-b2.y);

    var Den = dax*dby - day*dbx;
    if (Den == 0) return null;  // parallel
    
    var A = (a1.x * a2.y - a1.y * a2.x);
    var B = (b1.x * b2.y - b1.y * b2.x);
    
    var I = c;
    var iDen = 1/Den;
    I.x = ( A*dbx - dax*B ) * iDen;
    I.y = ( A*dby - day*B ) * iDen;
    
    if(!PolyK._InRect(I, b1, b2)) return null;
    if((day>0 && I.y>a1.y) || (day<0 && I.y<a1.y)) return null; 
    if((dax>0 && I.x>a1.x) || (dax<0 && I.x<a1.x)) return null; 
    return I;
  }
  
  PolyK._GetLineIntersection = function(a1, a2, b1, b2, c)
  {
    var dax = (a1.x-a2.x), dbx = (b1.x-b2.x);
    var day = (a1.y-a2.y), dby = (b1.y-b2.y);

    var Den = dax*dby - day*dbx;
    if (Den == 0) return null;  // parallel
    
    var A = (a1.x * a2.y - a1.y * a2.x);
    var B = (b1.x * b2.y - b1.y * b2.x);
    
    var I = c;
    I.x = ( A*dbx - dax*B ) / Den;
    I.y = ( A*dby - day*B ) / Den;
    
    if(PolyK._InRect(I, a1, a2) && PolyK._InRect(I, b1, b2)) return I;
    return null;
  }
  
  PolyK._InRect = function(a, b, c) // a in rect (b,c)
  {
    var minx = Math.min(b.x,c.x), maxx = Math.max(b.x,c.x);
    var miny = Math.min(b.y,c.y), maxy = Math.max(b.y,c.y);
    
    if  (minx == maxx) return (miny<=a.y && a.y<=maxy);
    if  (miny == maxy) return (minx<=a.x && a.x<=maxx);
    
    //return (minx <= a.x && a.x <= maxx && miny <= a.y && a.y <= maxy)
    return (minx <= a.x+1e-10 && a.x-1e-10 <= maxx && miny <= a.y+1e-10 && a.y-1e-10 <= maxy) ;   
  }
  
  PolyK._convex = function(ax, ay, bx, by, cx, cy)
  {
    return (ay-by)*(cx-bx) + (bx-ax)*(cy-by) >= 0;
  }
    
  PolyK._P = function(x,y)
  {
    this.x = x;
    this.y = y;
    this.flag = false;
  }
  PolyK._P.prototype.toString = function()
  {
    return "Point ["+this.x+", "+this.y+"]";
  }
  PolyK._P.dist = function(a,b)
  {
    var dx = b.x-a.x;
    var dy = b.y-a.y;
    return Math.sqrt(dx*dx + dy*dy);
  }
  
  PolyK._tp = [];
  for(var i=0; i<10; i++) PolyK._tp.push(new PolyK._P(0,0));

sampler.js

var Sampler = function() {}

Sampler.getSamples = function(path, num) {
  var len = path.getTotalLength()
  var p, t;
  var result = []
  for(var i = 0; i < num; i++) {
    p = path.getPointAtLength(i * len/num);
    t = Sampler.getTangent(path, i/num * 100);
    result.push({
      x: p.x,
      y: p.y,
      point: p, 
      tangent: t,
      perp: Sampler.rotate2d(t.v, 90)
    });
  }
  return result
}

Sampler.getTangent = function(path, percent) {
  // returns a normalized vector that describes the tangent
  // at the point that is found at *percent* of the path's length
  var fraction = percent/100;
  if(fraction < 0) fraction = 0;
  if(fraction > 0.99) fraction = 1;
  
  var len = path.getTotalLength();
  var point1 = path.getPointAtLength(fraction * len - 0.1);
  var point2 = path.getPointAtLength(fraction * len + 0.1);
 
  var vector = { x: point2.x - point1.x, y: point2.y - point1.y }
  var magnitude = Math.sqrt(vector.x*vector.x + vector.y*vector.y);
  vector.x /= magnitude;
  vector.y /= magnitude;

  return {p: point1, v: vector };
}

Sampler.rotate2d = function(vector, angle) {
  //rotate a vector 
  angle *= Math.PI/180; //convert to radians
  return {
    x: vector.x * Math.cos(angle) - vector.y * Math.sin(angle),
    y: vector.x * Math.sin(angle) + vector.y * Math.cos(angle)
  }
}

// we average the location of all the array's points to get the center
function centroid(samples) {
  var avg = {x:0, y:0};
  for(var i = 0; i < samples.length; i++) {
    avg.x += samples[i].x;
    avg.y += samples[i].y;
  }
  avg.x /= samples.length;
  avg.y /= samples.length;
  return avg;
}

// The PolyK library expects a flat array like [x,y,x,y...]
function toPolyK(samples) {
  var poly = []
  for(var i = 0; i < samples.length; i++) {
    poly.push(samples[i].x);
    poly.push(samples[i].y);
  }
  return poly;
}