block by enjalot 6455308

6455308

Full Screen

Sparkline Directive for Angular with d3.js

The reusable chart pattern makes it easy to make components responsive to changes in data as well as dimension.

Integrating with Angular based on code by @milr0c: Angular.js + d3.js

Miles’ talk on reusable charts with MV* Frameworks:Video

Shirley discusses a very similar pattern with Backbone: Video

index.html

<!DOCTYPE html>
  <head>
    <meta charset="utf-8">
    <link type="text/css" rel="stylesheet" href="style.css"/>
    <script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.0.6/angular.min.js"></script>
    <script src="//d3js.org/d3.v3.min.js"></script>
    <script src="perlin.js"></script>
    <script src="sparkline.js"></script>
  </head>
  <body>
    <div ng-app="main">
      <div ng-controller="MainController">
        <div class="span2">
          <button class="btn btn-success" ng-click="update()">update</button>
        </div>
        <chart-sparkline data="data"></chart-sparkline>
      </div>
    </div>
    <script type="text/javascript">
      var main = angular.module('main', [])
      .config(['$routeProvider', function($routeProvider) {
        $routeProvider.when('/', { controller: MainController });
      }]);

      // Controllers
      var MainController = ['$scope', function($scope) {
        // create random data
        $scope.randomize = function(n, y) {
          if (arguments.length < 2) y = 1;
          if (!arguments.length) n = 30;
          //we generate the data using perlin noise, just because;
          return d3.range(n).map(function(d, i) { return noise.simplex2(i*0.1 + $scope.updates * 0.1, i)*y })
          //it could just be random:
          //return d3.range(n).map(function(d) { return ~~(Math.random()*y) })
        };
        $scope.update = function() {
          //TODO: make this come from API
          $scope.updates++;
          $scope.data = $scope.randomize();
        };
        // Models
        //initial values
        $scope.updates = 0;
        $scope.data = $scope.randomize();
      }];

      // Views
      main.directive('chartSparkline', function() {
        var sparkline = charts.sparkline();
        return {
          restrict: 'E',
          replace: true,
          template: '<div class="chart"></div>',
          scope: {
            data: '=',
          },
          link: function($scope, $element, $attr) {
            //we select the element of this directive
            var div = d3.select($element[0]);
            //we calculate it's dimensions so we can be responsive
            var bbox = div.node().getBoundingClientRect();
            sparkline.width(bbox.width || 900);
            sparkline.height(bbox.height || 400 - 50);
            window.onresize = function() {
              bbox = div.node().getBoundingClientRect();
              sparkline.width(bbox.width || 900);
              sparkline.height(bbox.height || 400 - 50);
              //this is how you update the chart
              div.call(sparkline);
            }
            //we update the chart when the data get's updated
            $scope.$watch('data', function(newVal, oldVal) {
              if(newVal) div.datum(newVal).call(sparkline);
            });
          }
        }
      });
    </script>
  </body>
</html>

perlin.js

/*
 * A speed-improved perlin and simplex noise algorithms for 2D.
 *
 * Based on example code by Stefan Gustavson (stegu@itn.liu.se).
 * Optimisations by Peter Eastman (peastman@drizzle.stanford.edu).
 * Better rank ordering method by Stefan Gustavson in 2012.
 * Converted to Javascript by Joseph Gentle.
 *
 * Version 2012-03-09
 *
 * This code was placed in the public domain by its original author,
 * Stefan Gustavson. You may use it as you see fit, but
 * attribution is appreciated.
 *
 */

(function(global){
  var module = global.noise = {};

  function Grad(x, y, z) {
    this.x = x; this.y = y; this.z = z;
  }
  
  Grad.prototype.dot2 = function(x, y) {
    return this.x*x + this.y*y;
  };

  Grad.prototype.dot3 = function(x, y, z) {
    return this.x*x + this.y*y + this.z*z;
  };

  var grad3 = [new Grad(1,1,0),new Grad(-1,1,0),new Grad(1,-1,0),new Grad(-1,-1,0),
               new Grad(1,0,1),new Grad(-1,0,1),new Grad(1,0,-1),new Grad(-1,0,-1),
               new Grad(0,1,1),new Grad(0,-1,1),new Grad(0,1,-1),new Grad(0,-1,-1)];

  var p = [151,160,137,91,90,15,
  131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
  190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
  88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
  77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
  102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
  135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
  5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
  223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
  129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
  251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
  49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
  138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180];
  // To remove the need for index wrapping, double the permutation table length
  var perm = new Array(512);
  var gradP = new Array(512);

  // This isn't a very good seeding function, but it works ok. It supports 2^16
  // different seed values. Write something better if you need more seeds.
  module.seed = function(seed) {
    if(seed > 0 && seed < 1) {
      // Scale the seed out
      seed *= 65536;
    }

    seed = Math.floor(seed);
    if(seed < 256) {
      seed |= seed << 8;
    }

    for(var i = 0; i < 256; i++) {
      var v;
      if (i & 1) {
        v = p[i] ^ (seed & 255);
      } else {
        v = p[i] ^ ((seed>>8) & 255);
      }

      perm[i] = perm[i + 256] = v;
      gradP[i] = gradP[i + 256] = grad3[v % 12];
    }
  };

  module.seed(0);

  /*
  for(var i=0; i<256; i++) {
    perm[i] = perm[i + 256] = p[i];
    gradP[i] = gradP[i + 256] = grad3[perm[i] % 12];
  }*/

  // Skewing and unskewing factors for 2, 3, and 4 dimensions
  var F2 = 0.5*(Math.sqrt(3)-1);
  var G2 = (3-Math.sqrt(3))/6;

  var F3 = 1/3;
  var G3 = 1/6;

  // 2D simplex noise
  module.simplex2 = function(xin, yin) {
    var n0, n1, n2; // Noise contributions from the three corners
    // Skew the input space to determine which simplex cell we're in
    var s = (xin+yin)*F2; // Hairy factor for 2D
    var i = Math.floor(xin+s);
    var j = Math.floor(yin+s);
    var t = (i+j)*G2;
    var x0 = xin-i+t; // The x,y distances from the cell origin, unskewed.
    var y0 = yin-j+t;
    // For the 2D case, the simplex shape is an equilateral triangle.
    // Determine which simplex we are in.
    var i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
    if(x0>y0) { // lower triangle, XY order: (0,0)->(1,0)->(1,1)
      i1=1; j1=0;
    } else {    // upper triangle, YX order: (0,0)->(0,1)->(1,1)
      i1=0; j1=1;
    }
    // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
    // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
    // c = (3-sqrt(3))/6
    var x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
    var y1 = y0 - j1 + G2;
    var x2 = x0 - 1 + 2 * G2; // Offsets for last corner in (x,y) unskewed coords
    var y2 = y0 - 1 + 2 * G2;
    // Work out the hashed gradient indices of the three simplex corners
    i &= 255;
    j &= 255;
    var gi0 = gradP[i+perm[j]];
    var gi1 = gradP[i+i1+perm[j+j1]];
    var gi2 = gradP[i+1+perm[j+1]];
    // Calculate the contribution from the three corners
    var t0 = 0.5 - x0*x0-y0*y0;
    if(t0<0) {
      n0 = 0;
    } else {
      t0 *= t0;
      n0 = t0 * t0 * gi0.dot2(x0, y0);  // (x,y) of grad3 used for 2D gradient
    }
    var t1 = 0.5 - x1*x1-y1*y1;
    if(t1<0) {
      n1 = 0;
    } else {
      t1 *= t1;
      n1 = t1 * t1 * gi1.dot2(x1, y1);
    }
    var t2 = 0.5 - x2*x2-y2*y2;
    if(t2<0) {
      n2 = 0;
    } else {
      t2 *= t2;
      n2 = t2 * t2 * gi2.dot2(x2, y2);
    }
    // Add contributions from each corner to get the final noise value.
    // The result is scaled to return values in the interval [-1,1].
    return 70 * (n0 + n1 + n2);
  };

  // 3D simplex noise
  module.simplex3 = function(xin, yin, zin) {
    var n0, n1, n2, n3; // Noise contributions from the four corners

    // Skew the input space to determine which simplex cell we're in
    var s = (xin+yin+zin)*F3; // Hairy factor for 2D
    var i = Math.floor(xin+s);
    var j = Math.floor(yin+s);
    var k = Math.floor(zin+s);

    var t = (i+j+k)*G3;
    var x0 = xin-i+t; // The x,y distances from the cell origin, unskewed.
    var y0 = yin-j+t;
    var z0 = zin-k+t;

    // For the 3D case, the simplex shape is a slightly irregular tetrahedron.
    // Determine which simplex we are in.
    var i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
    var i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
    if(x0 >= y0) {
      if(y0 >= z0)      { i1=1; j1=0; k1=0; i2=1; j2=1; k2=0; }
      else if(x0 >= z0) { i1=1; j1=0; k1=0; i2=1; j2=0; k2=1; }
      else              { i1=0; j1=0; k1=1; i2=1; j2=0; k2=1; }
    } else {
      if(y0 < z0)      { i1=0; j1=0; k1=1; i2=0; j2=1; k2=1; }
      else if(x0 < z0) { i1=0; j1=1; k1=0; i2=0; j2=1; k2=1; }
      else             { i1=0; j1=1; k1=0; i2=1; j2=1; k2=0; }
    }
    // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
    // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
    // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
    // c = 1/6.
    var x1 = x0 - i1 + G3; // Offsets for second corner
    var y1 = y0 - j1 + G3;
    var z1 = z0 - k1 + G3;

    var x2 = x0 - i2 + 2 * G3; // Offsets for third corner
    var y2 = y0 - j2 + 2 * G3;
    var z2 = z0 - k2 + 2 * G3;

    var x3 = x0 - 1 + 3 * G3; // Offsets for fourth corner
    var y3 = y0 - 1 + 3 * G3;
    var z3 = z0 - 1 + 3 * G3;

    // Work out the hashed gradient indices of the four simplex corners
    i &= 255;
    j &= 255;
    k &= 255;
    var gi0 = gradP[i+   perm[j+   perm[k   ]]];
    var gi1 = gradP[i+i1+perm[j+j1+perm[k+k1]]];
    var gi2 = gradP[i+i2+perm[j+j2+perm[k+k2]]];
    var gi3 = gradP[i+ 1+perm[j+ 1+perm[k+ 1]]];

    // Calculate the contribution from the four corners
    var t0 = 0.5 - x0*x0-y0*y0-z0*z0;
    if(t0<0) {
      n0 = 0;
    } else {
      t0 *= t0;
      n0 = t0 * t0 * gi0.dot3(x0, y0, z0);  // (x,y) of grad3 used for 2D gradient
    }
    var t1 = 0.5 - x1*x1-y1*y1-z1*z1;
    if(t1<0) {
      n1 = 0;
    } else {
      t1 *= t1;
      n1 = t1 * t1 * gi1.dot3(x1, y1, z1);
    }
    var t2 = 0.5 - x2*x2-y2*y2-z2*z2;
    if(t2<0) {
      n2 = 0;
    } else {
      t2 *= t2;
      n2 = t2 * t2 * gi2.dot3(x2, y2, z2);
    }
    var t3 = 0.5 - x3*x3-y3*y3-z3*z3;
    if(t3<0) {
      n3 = 0;
    } else {
      t3 *= t3;
      n3 = t3 * t3 * gi3.dot3(x3, y3, z3);
    }
    // Add contributions from each corner to get the final noise value.
    // The result is scaled to return values in the interval [-1,1].
    return 32 * (n0 + n1 + n2 + n3);

  };

  // ##### Perlin noise stuff

  function fade(t) {
    return t*t*t*(t*(t*6-15)+10);
  }

  function lerp(a, b, t) {
    return (1-t)*a + t*b;
  }

  // 2D Perlin Noise
  module.perlin2 = function(x, y) {
    // Find unit grid cell containing point
    var X = Math.floor(x), Y = Math.floor(y);
    // Get relative xy coordinates of point within that cell
    x = x - X; y = y - Y;
    // Wrap the integer cells at 255 (smaller integer period can be introduced here)
    X = X & 255; Y = Y & 255;

    // Calculate noise contributions from each of the four corners
    var n00 = gradP[X+perm[Y]].dot2(x, y);
    var n01 = gradP[X+perm[Y+1]].dot2(x, y-1);
    var n10 = gradP[X+1+perm[Y]].dot2(x-1, y);
    var n11 = gradP[X+1+perm[Y+1]].dot2(x-1, y-1);

    // Compute the fade curve value for x
    var u = fade(x);

    // Interpolate the four results
    return lerp(
        lerp(n00, n10, u),
        lerp(n01, n11, u),
       fade(y));
  };

  // 3D Perlin Noise
  module.perlin3 = function(x, y, z) {
    // Find unit grid cell containing point
    var X = Math.floor(x), Y = Math.floor(y), Z = Math.floor(z);
    // Get relative xyz coordinates of point within that cell
    x = x - X; y = y - Y; z = z - Z;
    // Wrap the integer cells at 255 (smaller integer period can be introduced here)
    X = X & 255; Y = Y & 255; Z = Z & 255;

    // Calculate noise contributions from each of the eight corners
    var n000 = gradP[X+  perm[Y+  perm[Z  ]]].dot3(x,   y,     z);
    var n001 = gradP[X+  perm[Y+  perm[Z+1]]].dot3(x,   y,   z-1);
    var n010 = gradP[X+  perm[Y+1+perm[Z  ]]].dot3(x,   y-1,   z);
    var n011 = gradP[X+  perm[Y+1+perm[Z+1]]].dot3(x,   y-1, z-1);
    var n100 = gradP[X+1+perm[Y+  perm[Z  ]]].dot3(x-1,   y,   z);
    var n101 = gradP[X+1+perm[Y+  perm[Z+1]]].dot3(x-1,   y, z-1);
    var n110 = gradP[X+1+perm[Y+1+perm[Z  ]]].dot3(x-1, y-1,   z);
    var n111 = gradP[X+1+perm[Y+1+perm[Z+1]]].dot3(x-1, y-1, z-1);

    // Compute the fade curve value for x, y, z
    var u = fade(x);
    var v = fade(y);
    var w = fade(z);

    // Interpolate
    return lerp(
        lerp(
          lerp(n000, n100, u),
          lerp(n001, n101, u), w),
        lerp(
          lerp(n010, n110, u),
          lerp(n011, n111, u), w),
       v);
  };

})(this);

sparkline.js

charts = {};

charts.sparkline = function() {
  // basic data
  var margin = {top: 0, bottom: 50, left: 0, right: 0},
      width = 900,
      height = 400,
      //accessors
      xValue = function(d, i) { return i; },
      yValue = function(d) { return d; },
      // chart underpinnings
      x = d3.scale.ordinal(),
      y = d3.scale.linear(),
      // chart enhancements
      elastic = {
        x: true,
        y: true
      },
      convertData = true,
      duration = 500,
      formatNumber = d3.format(',d');

  function render(selection) {
    selection.each(function(data) {
      // setup the basics
      var w = width - margin.left - margin.right,
          h = height - margin.top - margin.bottom;

      if (convertData) {
        data = data.map(function(d, i) {
          return {
            x: xValue.call(data, d, i),
            y: yValue.call(data, d, i)
          };
        });
      }
      // set scales
      if (elastic.x) x.domain(data.map(function(d) { return d.x; }));
      if (elastic.y) y.domain([d3.min(data, function(d) { return d.y}), d3.max(data, function(d) { return d.y; })]);
      console.log("data", data)
      console.log("bounds", x.domain(), y.domain())
      x.rangeRoundBands([0, w], .1);
      y.range([h, margin.bottom]);

      var line = d3.svg.line()
        .x(function(d) { return x(d.x) })
        .y(function(d) { return y(d.y) })
        .interpolate("basis")

      var svg = selection.selectAll('svg').data([data]);
      var chartEnter = svg.enter()
        .append('svg')
        .append('g')
          .attr('width', w)
          .attr('height', h)
          .attr('transform', 'translate(' + margin.left + ',' + margin.top + ')')
          .classed('chart', true);
      var chart = svg.select('.chart');


      path = chart.selectAll('.path').data([data]);

      path.enter()
        .append('path')
          .classed('path', true)
          .attr('d', line)

      path.transition()
        .duration(duration)
          .attr('d', line)

      path.exit()
        .transition()
        .duration(duration)
        .style('opacity', 0)
        .remove();
    });
  }

  // basic data
  render.margin = function(_) {
    if (!arguments.length) return margin;
    margin = _;
    return render;
  };
  render.width = function(_) {
    if (!arguments.length) return width;
    width = _;
    return render;
  };
  render.height = function(_) {
    if (!arguments.length) return height;
    height = _;
    return render;
  };

  // accessors
  render.xValue = function(_) {
    if (!arguments.length) return xValue;
    xValue = _;
    return render;
  };
  render.yValue = function(_) {
    if (!arguments.length) return yValue;
    yValue = _;
    return render;
  };

  render.x = function(_) {
    if (!arguments.length) return x;
    x = _;
    return render;
  };
  render.y = function(_) {
    if (!arguments.length) return y;
    y = _;
    return render;
  };

  // chart enhancements
  render.elastic = function(_) {
    if (!arguments.length) return elastic;
    elastic = _;
    return render;
  };
  render.convertData = function(_) {
    if (!arguments.length) return convertData;
    convertData = _;
    return render;
  };
  render.duration = function(_) {
    if (!arguments.length) return duration;
    duration = _;
    return render;
  };
  render.formatNumber = function(_) {
    if (!arguments.length) return formatNumber;
    formatNumber = _;
    return render;
  };

  return render;
};

style.css

body {
  font: 14px helvetica;
  width: 100%;
  height: 100%;
}

.chart {
  width: 100%;
  height: 100%;
}

.path {
  fill: none;
  stroke: #000;
  stroke-width: 3px;
}

.selected {
  stroke: #78C656;
}
.btn {
  font-size: 40px;
  background-color: #efefef;
}