block by fil 8277a0a590dec3debf142bcd1e827416

Cox Projection - no ATA

Full Screen

Conformal projection of the Sphere within an equilateral triangle.

In this aspect, we’re ignoring Antarctica.

Original research by Philippe Rivière for d3-geo-projection, issue #118.

(See also the North polar aspect.)

Reference papers:


[](https://github.com/Fil/) Questions and comments welcome on [gitter.im/d3](https://gitter.im/d3/d3), [twitter](https://twitter.com/@recifs) or [slack](https://d3js.slack.com).

forked from Fil‘s block: Cox Projection

index.html

<!DOCTYPE html>
<canvas width="960" height="500"></canvas>
<script src="https://d3js.org/d3.v4.js"></script>
<script src="https://d3js.org/d3-geo-projection.v2.min.js"></script>
<script src="https://d3js.org/topojson.v2.min.js"></script>
<script src="https://unpkg.com/complex.js"></script>
<script>
  // Approximate \int _0 ^sm(z)  dt / (1 - t^3)^(2/3)
  // sm maps a triangle to a disc, sm^-1 does the opposite
  function sm_1(s){
    var z = Complex(s),
        w = Complex([-1/2, Math.sqrt(3)/2]),
        k = Complex(0);

    // rotate to have s ~= 1
    var rot = w.clone().pow(d3.scan([0,1,2].map(
      i => -(z.clone().mul(w.clone().pow(i))).re
    )));
      
    var y = rot.clone().mul(z).mul(-1).add(1);
    
    // var n = 3
    // w1 = gamma(1/n) * gamma(1 - 2/n) / n / gamma(1 - 1/n)
    // https://bl.ocks.org/Fil/852557838117687bbd985e4b38ff77d4
    var w1 = 1.7666387502854533;

    // McIlroy formula 5 p6 and table for F3 page 16
    var F0 = [
      1.44224957030741,
      0.240374928384568,
      0.0686785509670194,
      0.0178055502507087,
      0.00228276285265497,
      -1.48379585422573e-3,
      -1.64287728109203e-3,
      -1.02583417082273e-3,
      -4.83607537673571e-4,
      -1.67030822094781e-4,
      -2.45024395166263e-5,
      2.14092375450951e-5,
      2.55897270486771e-5,
      1.73086854400834e-5,
      8.72756299984649e-6,
      3.18304486798473e-6,
      4.79323894565283e-7
      -4.58968389565456e-7,
      -5.62970586787826e-7,
      -3.92135372833465e-7
    ];
    
    var F = Complex(0);
    for (var i = F0.length; i--;) {
      F = Complex(F0[i]).add(F.mul(y));
    }

    // /!\ mutates y
    var k = Complex(w1).add(y.pow(1-2/3).mul(-1).mul(F)).mul(rot.pow(2))

    
    // when we are close to [0,0] we switch to another approximation:
    // https://www.wolframalpha.com/input/?i=(-2%2F3+choose+k)++*+(-1)%5Ek++%2F+(k%2B1)+with+k%3D0,1,2,3,4
    // the difference is _very_ tiny but necessary
    // if we want projection(0,0) === [0,0]
    var n = z.abs(), m = 0.3;
    if (n < m) {
      var H0 = [
        1, 1/3, 5/27, 10/81, 22/243 //…
       ];
      var z3 = z.clone().pow(3);
      var h = Complex(0);
      for (i = H0.length; i--;) {
        h = Complex(H0[i]).add(h.mul(z3));
      }
      h = h.mul(z);
      k.mul(n / m).add(h.mul(1 - n / m));
    }
    
    return k.toVector();
  }

  var canvas = d3.select("canvas"),
  width = canvas.property("width"),
  height = canvas.property("height"),
  context = canvas.node().getContext("2d");

  // retina display
  var devicePixelRatio = window.devicePixelRatio || 1;
  canvas.style('width', canvas.attr('width')+'px');
  canvas.style('height', canvas.attr('height')+'px');
  canvas.attr('width', canvas.attr('width') * devicePixelRatio);
  canvas.attr('height', canvas.attr('height') * devicePixelRatio);
  context.scale(devicePixelRatio,devicePixelRatio);

  function coxRaw(lambda, phi){
    var s = d3.geoLagrangeRaw(0.5)(lambda, phi);
    var t = sm_1([s[1] / 2, s[0] / 2]);
    return [t[1], t[0]]
  }

projection = d3.geoProjection(coxRaw)
  .rotate([-10.8,0])
  .scale(188.68216)
  .translate([480, 500 * 2/3])
.precision(0.01);

  
// the Sphere should go *exactly* to the vertices of the triangles
// because they're singular points
function sphere() {
  var degrees = 180 / Math.PI,
      c = 2 * Math.asin(1/Math.sqrt(5))*degrees;
  return {
    type: "Polygon",
    coordinates: [
      [ [ 0,90 ],  [ -180, -c ], [ 0, -90 ], [ 180, -c ], [ 0,90 ] ]
    ]
  };
}
  
var stream_ = projection.stream;
projection.stream = function(stream) {
    var rotate = projection.rotate(),
        rotateStream = stream_(stream),
        sphereStream = (projection.rotate([0, 0]), stream_(stream));
    projection.rotate(rotate);
    rotateStream.sphere = function() { d3.geoStream(sphere(), sphereStream); };
    return rotateStream;
  };
  
var path = d3.geoPath().projection(projection).context(context);

d3.json("https://unpkg.com/world-atlas@1/world/110m.json", function(
  error,
  world
) {
  if (error) throw error;

  var land1 = topojson.merge(world, world.objects.countries.geometries
                            .filter(d => d.id !== "010") // Antarctica
                           );
  var land = topojson.merge(world, world.objects.countries.geometries
                            //.filter(d => d.id !== "010") // Antarctica
                           );
  projection.fitExtent([[1,1], [width-1, height-1]], land1);
  
  render = function() {
    context.fillStyle = "#fff";
    context.fillRect(0, 0, width, height);

    context.beginPath();
    path({type:"Sphere"});
    context.strokeStyle = "black";
    context.lineWidth = 1.5;
    context.stroke(), context.closePath();

    context.beginPath();
    path(d3.geoGraticule()());
    context.strokeStyle = "#777";
    context.lineWidth = 0.5;
    context.stroke(), context.closePath();

    context.beginPath();
    var now = performance.now()
    path(land);
    console.log(performance.now() - now)
    context.lineWidth = 2;
    context.strokeStyle = "#000";
    context.stroke();
    context.fillStyle = "rgba(240,240,240,0.9)";
    context.fill();
    context.closePath();
    

  };

  render();
});

</script>