block by fil 9ed0567b68501ee3c3fef6fbe3c81564

Versor Dragging - d3 & three.js running in sync

Full Screen

Synchronization of d3 and tree.js globes with quaternion/versor drag.

An answer to https://github.com/d3/d3-geo/issues/74

Forked from mbostock‘s block: Versor Dragging

index.html

<!DOCTYPE html>

    <style>
      #map-layer {
        position: absolute;
        left: 0;
        top: 0;
        z-index: 2;
      }
      #shade-layer {
        position: absolute;
        left: 0;
        top: 0;
        z-index: 1;
      }
    </style>


<canvas width="960" height="600" id="map-layer"></canvas>
<script src="https://d3js.org/d3.v4.min.js"></script>
<script src="https://unpkg.com/topojson-client@2"></script>
<script src='https://cdnjs.cloudflare.com/ajax/libs/three.js/r83/three.min.js'></script>
<script src="versor.js"></script>
<script>

var canvas = d3.select("canvas"),
    width = canvas.property("width"),
    height = canvas.property("height"),
    context = canvas.node().getContext("2d");

var projection = d3.geoOrthographic()
    .scale((height - 40) / 2)
    .translate([width / 2, height / 2])
    .precision(0.1);

var path = d3.geoPath()
    .projection(projection)
    .context(context);

canvas.call(d3.drag()
    .on("start", dragstarted)
    .on("drag", dragged));

var render = function() {},
    v0, // Mouse position in Cartesian coordinates at start of drag gesture.
    r0, // Projection rotation as Euler angles at start.
    q0; // Projection rotation as versor at start.

function dragstarted() {
  v0 = versor.cartesian(projection.invert(d3.mouse(this)));
  r0 = projection.rotate();
  q0 = versor(r0);
}

function dragged() {
  var v1 = versor.cartesian(projection.rotate(r0).invert(d3.mouse(this))),
      q1 = versor.multiply(q0, versor.delta(v0, v1)),
      r1 = versor.rotation(q1);
  projection.rotate(r1);
  render();
  
        // Rotate Three.js objects according to the versor
        // for some strange reason the order of arguments is not the same
        var q = new THREE.Quaternion(-q1[2], q1[1], q1[3], q1[0])
        //q.normalize() // not needed since our versor norm = 1
        sphereObject.setRotationFromQuaternion(q)
        drawShadeLayer()
}

d3.json("https://unpkg.com/world-atlas@1/world/110m.json", function(error, world) {
  if (error) throw error;

  var sphere = {type: "Sphere"},
      land = topojson.feature(world, world.objects.land);

  render = function() {
    context.clearRect(0, 0, width, height);
    context.beginPath(), path(land), context.strokeStyle = "#000", context.stroke();
//    context.beginPath(), path(sphere), context.stroke();
  };

  render();
});

  
        // Create 3D scene and camera objects.
  const WIDTH=width, HEIGHT=height;
      const RADIUS = projection.scale()
      const INITIAL_ROTATE = [0, 0]
      const SCALE = RADIUS
      const BACKGROUND_COLOR = 'white'
      const TO_RADIAN = Math.PI / 180
      const TO_DEGREE = 180 / Math.PI
      const ROTATION_SCALE = 0.25

      var scene = new THREE.Scene()
      var camera = new THREE.OrthographicCamera(-WIDTH / 2, WIDTH / 2, HEIGHT / 2, -HEIGHT / 2, 0.1, 10000)
      camera.position.z = 500 // (higher than RADIUS + size of the bubble)
        // Create renderer object.
      var renderer = new THREE.WebGLRenderer({
        antialias: true
      })
      renderer.domElement.id = 'shade-layer'
      renderer.setClearColor(BACKGROUND_COLOR, 1)
      renderer.setSize(WIDTH, HEIGHT)
      document.body.appendChild(renderer.domElement)

      // Create sphere.
      var sphere = new THREE.SphereGeometry(SCALE, 100, 100)
      var sphereMaterial = new THREE.MeshNormalMaterial({
        wireframe: false
      })
      var sphereMesh = new THREE.Mesh(sphere, sphereMaterial)
        // For debug ...
      var dot1 = new THREE.SphereGeometry(30, 10, 10)
      dot1.translate(0, 0, SCALE)
      var dot1Material = new THREE.MeshBasicMaterial({
        color: 'blue'
      })
      var dot1Mesh = new THREE.Mesh(dot1, dot1Material)
      var dot2 = new THREE.SphereGeometry(30, 10, 10)
      dot2.translate(SCALE, 0, 0)
      var dot2Material = new THREE.MeshBasicMaterial({
        color: 'red'
      })
      var dot2Mesh = new THREE.Mesh(dot2, dot2Material)
      var dot3 = new THREE.SphereGeometry(30, 10, 10)
      dot3.translate(0, -SCALE, 0)
      var dot3Material = new THREE.MeshBasicMaterial({
        color: 'green'
      })
      var dot3Mesh = new THREE.Mesh(dot3, dot3Material)
      var sphereObject = new THREE.Object3D()
      sphereObject.add(sphereMesh, dot1Mesh, dot2Mesh, dot3Mesh)

      scene.add(sphereObject)
      function drawShadeLayer() {
        renderer.render(scene, camera)
      }
      drawShadeLayer();
  
</script>

versor.js

// Version 0.0.0. Copyright 2017 Mike Bostock.
(function(global, factory) {
  typeof exports === 'object' && typeof module !== 'undefined' ? module.exports = factory() :
  typeof define === 'function' && define.amd ? define(factory) :
  (global.versor = factory());
}(this, (function() {'use strict';

var acos = Math.acos,
    asin = Math.asin,
    atan2 = Math.atan2,
    cos = Math.cos,
    max = Math.max,
    min = Math.min,
    PI = Math.PI,
    sin = Math.sin,
    sqrt = Math.sqrt,
    radians = PI / 180,
    degrees = 180 / PI;

// Returns the unit quaternion for the given Euler rotation angles [λ, φ, γ].
function versor(e) {
  var l = e[0] / 2 * radians, sl = sin(l), cl = cos(l), // λ / 2
      p = e[1] / 2 * radians, sp = sin(p), cp = cos(p), // φ / 2
      g = e[2] / 2 * radians, sg = sin(g), cg = cos(g); // γ / 2
  return [
    cl * cp * cg + sl * sp * sg,
    sl * cp * cg - cl * sp * sg,
    cl * sp * cg + sl * cp * sg,
    cl * cp * sg - sl * sp * cg
  ];
}

// Returns Cartesian coordinates [x, y, z] given spherical coordinates [λ, φ].
versor.cartesian = function(e) {
  var l = e[0] * radians, p = e[1] * radians;
  return [cos(p) * cos(l), cos(p) * sin(l), sin(p)];
};

// Returns the Euler rotation angles [λ, φ, γ] for the given quaternion.
versor.rotation = function(q) {
  return [
    atan2(2 * (q[0] * q[1] + q[2] * q[3]), 1 - 2 * (q[1] * q[1] + q[2] * q[2])) * degrees,
    asin(max(-1, min(1, 2 * (q[0] * q[2] - q[3] * q[1])))) * degrees,
    atan2(2 * (q[0] * q[3] + q[1] * q[2]), 1 - 2 * (q[2] * q[2] + q[3] * q[3])) * degrees
  ];
};

// Returns the quaternion to rotate between two cartesian points on the sphere.
versor.delta = function(v0, v1) {
  var w = cross(v0, v1), l = sqrt(dot(w, w));
  if (!l) return [1, 0, 0, 0];
  var t = acos(max(-1, min(1, dot(v0, v1)))) / 2, s = sin(t); // t = θ / 2
  return [cos(t), w[2] / l * s, -w[1] / l * s, w[0] / l * s];
};

// Returns the quaternion that represents q0 * q1.
versor.multiply = function(q0, q1) {
  return [
    q0[0] * q1[0] - q0[1] * q1[1] - q0[2] * q1[2] - q0[3] * q1[3],
    q0[1] * q1[0] + q0[0] * q1[1] + q0[2] * q1[3] - q0[3] * q1[2],
    q0[0] * q1[2] - q0[1] * q1[3] + q0[2] * q1[0] + q0[3] * q1[1],
    q0[0] * q1[3] + q0[1] * q1[2] - q0[2] * q1[1] + q0[3] * q1[0]
  ];
};

function cross(v0, v1) {
  return [
    v0[1] * v1[2] - v0[2] * v1[1],
    v0[2] * v1[0] - v0[0] * v1[2],
    v0[0] * v1[1] - v0[1] * v1[0]
  ];
}

function dot(v0, v1) {
  return v0[0] * v1[0] + v0[1] * v1[1] + v0[2] * v1[2];
}

return versor;
})));