block by fil d5313cd939947169df5c37e896e5aa38

Tetrahedric Gnomonic Projection

Full Screen

Fixing the tetrahedric gnomonic requires specially modified versions of d3-geo and d3-geo-projection to handle clipPolygon().


[](https://github.com/Fil/) Questions and comments welcome on [gitter.im/d3](https://gitter.im/d3/d3), [twitter](https://twitter.com/@recifs) or [slack](https://d3js.slack.com).

forked from Fil‘s block: Lee’s Tetrahedric Conformal Projection

index.html

<!DOCTYPE html>
<!-- 578 ~= 500 * 2 / sqrt(3) -->
<div style="text-align:center"><canvas width="578" height="500"></canvas></div>
<script src="https://d3js.org/d3.v4.js"></script>
<!-- <script src="https://d3js.org/d3-geo-projection.v2.js"></script> -->
<script src="d3-geo.js"></script>
<script src="d3-geo-projection.js"></script>
<script src="https://d3js.org/topojson.v2.min.js"></script>
<script src="https://unpkg.com/complex.js"></script>


<script>

  var canvas = d3.select("canvas"),
  width = canvas.property("width"),
  height = canvas.property("height"),
  context = canvas.node().getContext("2d");

  // retina display
  var devicePixelRatio = window.devicePixelRatio || 1;
  canvas.style('width', canvas.attr('width')+'px');
  canvas.style('height', canvas.attr('height')+'px');
  canvas.attr('width', canvas.attr('width') * devicePixelRatio);
  canvas.attr('height', canvas.attr('height') * devicePixelRatio);
  context.scale(devicePixelRatio,devicePixelRatio);


  
  
// import from math
var epsilon = 1e-6, epsilon2 = epsilon * epsilon, asin = Math.asin;
var pi = Math.PI, degrees = 180 / pi, asin1_3 = Math.asin(1 / 3);


// the Sphere should go *exactly* to the vertices of the triangles
// because they are singular points
function sphere() {
  var c = - asin1_3 * degrees;
  var eps = 1e-6;
  return {
    type: "Polygon",
    coordinates: [
      [ [ -120, 90-eps ], [ -60, c ],  [ 0, 90-eps ], [ 60, c ], [ 120, 90-eps ], [ 180, c ], [ -120, 90-eps ] ]
    ]
  };
}

var centers = [
  [0, 90],
  [-180, -asin1_3 * degrees],
  [-60, -asin1_3 * degrees],
  [60, -asin1_3 * degrees]
];
  var tetrahedron = [[1, 2, 3], [0, 2, 1], [0, 3, 2], [0, 1, 3]].map(function(
    face
  ) {
    return face.map(function(i) {
      return centers[i];
    });
  });

 
d3.geoTetrahedralLee = function(faceProjection) {

  faceProjection =
    faceProjection ||
    function(face) {
      var c = d3.geoCentroid({ type: "MultiPoint", coordinates: face }),
          rotate = [ -c[0], -c[1], 30 ];
      if (Math.abs(c[1]) == 90) {
        rotate = [ 0, -c[1], -30 ];
      }
      return d3
        .geoProjection(d3.geoGnomonicRaw)
        .scale(1)
        .translate([0, 0])
        .rotate(rotate);
    };

  var faces = tetrahedron.map(function(face) {
    return { face: face, project: faceProjection(face) };
  });

  [-1, 0, 0, 0].forEach(function(d, i) {
    var node = faces[d];
    node && (node.children || (node.children = [])).push(faces[i]);
  });

  return d3
    .geoPolyhedral(
      faces[0],
      function(lambda, phi) {
        lambda *= degrees;
        phi *= degrees;
        for (var i = 0; i < faces.length; i++) {
          if (
            d3.geoContains(
              {
                type: "Polygon",
                coordinates: [[...tetrahedron[i], tetrahedron[i][0]]]
              },
              [lambda, phi]
            )
          ) {
            return faces[i];
          }
        }
      },
      pi / 6
    )
    .clipAngle(360) // this is only to avoid antimeridian clipping on the Sphere
    .precision(0.05)
    .rotate([-30, 0])
    .rotate([30, 180]) // for North Pole aspect, needs clipPolygon
    .fitExtent([[1, 1], [width-1, height-1]], {type: "Sphere"})
  
};

projection = d3.geoTetrahedralLee();

  
  

  
  
var init_scale = projection.scale(),
  path = d3.geoPath().projection(projection).context(context);

d3.json("https://unpkg.com/world-atlas@1/world/110m.json", function(
  error,
  world
) {
  if (error) throw error;

  var land = topojson.merge(world, world.objects.countries.geometries);

  render = function() {
    var tiling = false;
    context.fillStyle = "#fff";
    context.fillRect(0, 0, width, height);

    if (!tiling) {

    context.beginPath();
    path(d3.geoGraticule()());
    context.strokeStyle = "#777";
    context.lineWidth = 0.5;
    context.stroke(), context.closePath();

    // equator
    context.beginPath();
    path(d3.geoCircle().center([0,90]).radius(90)());
    context.strokeStyle = "#000";
    context.lineWidth = 1;
    context.stroke(), context.closePath();

    // inner triangle
    context.beginPath();
    {
      let rotate = projection.rotate();
      var inner = centers.map(projection.rotate([0,0]));
      projection.rotate(rotate);
    }
      context.moveTo(inner[1][0], inner[1][1]);
      context.lineTo(inner[2][0], inner[2][1]);
      context.lineTo(inner[3][0], inner[3][1]);
      context.lineTo(inner[1][0], inner[1][1]);
    context.strokeStyle = "#777";
    context.lineWidth = 0.5;
    context.setLineDash([5,3]);
    context.stroke(), context.closePath();
    context.setLineDash([]);

    }

    context.beginPath();
    path({type:"Sphere"});
    context.strokeStyle = "#000";
    context.lineWidth = 2;
    context.stroke(), context.closePath();

    context.beginPath();
    var now = performance.now();
    path(land);
    console.log('time', Math.round(performance.now()-now)+'ms');
    context.lineWidth = 1;
    context.strokeStyle = "#000";
    context.stroke();
    context.fillStyle = "#000";
    context.fill();
    context.closePath();

    console.log(projection([0,-90]))
    if (tiling) {
    context.beginPath();
    context.rotate(pi);
    context.translate(-1247,-500);
    path(land);
    context.translate(575,0);
    path(land);
    context.lineWidth = 1;
    //context.strokeStyle = "red";
    context.stroke();
    //context.fillStyle = "pink";
    context.fill();
    context.closePath();
    }
  };

  render();
});


</script>