block by fil d9752d8c41cc2cc176096ce475233966

LAP-JV Worker

Full Screen

LAP-JV

Linear Assignment Problem — algorithm by R. Jonker and A. Volgenant

Ported to javascript by Philippe Rivière, from the C++ implementation found at https://github.com/yongyanghz/LAPJV-algorithm-c

See Fil/lap-jv for details, and a simpler example.

index.html

<!DOCTYPE html>
<head>
  <meta charset="utf-8">
  <script src="https://d3js.org/d3.v4.min.js"></script>
  <style>
    body { margin:0;position:fixed;top:0;right:0;bottom:0;left:0; }
  </style>
</head>

<body>
  <script>
    // Feel free to change or delete any of the code you see in this editor!
    var svg = d3.select("body").append("svg")
      .attr("width", 960)
      .attr("height", 500)

    const m = 40, n = m * m, w = Math.ceil(480/m);
    
    // const data = d3.range(n).map(k => [Math.floor(100 * m * (2 + Math.cos( k ))/4)/100, Math.floor(100 * m * (2 + Math.sin(k))/4)/100]);
    const data = d3.range(n).map(k => [m * Math.random(), m * Math.random()]);
    // const data = d3.range(n).map(k => [m * (1 + Math.cos(k))/2, m * (1 + Math.sin(k))/2]);
    // const data = d3.range(n).map(k => { const i = k % m, j = (k-i)/m; return [i + Math.random(),j + Math.random()]; });
    
    data.map(d => d.color = d3.rgb(Math.random()*255, Math.random()*255, Math.random()*255));
    
    svg.selectAll('circle')
    .data(data)
    .enter()
    .append('circle')
    .attr('r', 3);
    
    svg.selectAll('circle')
    .attr('cx', d => w * d[0])
    .attr('cy', d => w * d[1])
    .attr('fill', d => d.color);


    createWorker('worker.js', (worker) => {
      const start = performance.now();
     worker.postMessage({
           m: m,
           data: data,
     });

     worker.onmessage = function (e) {
       if (e.data.assign) {
         console.log(n + ': ' + Math.ceil(performance.now() - start) + 'ms')
         draw(e.data.assign);
       }
     }
    });

function draw(res) {
    res.col.map((c, k) => {
      const i = k % m, j = (k-i)/m;
      data[c].i = i;
      data[c].j = j;
    });
  svg.selectAll('line')
    .data(data)
    .enter()
    .append('line')
    .attr('x1', d => w * d[0])
    .attr('y1', d => w * d[1])
    .attr('x2', d => w * d[0])
    .attr('y2', d => w * d[1])
    .attr('stroke', d => d.color)
    .attr('opacity', 0.8)
    .transition()
    .duration(1500)
    .attr('x2', d => w/2 + w * d.i)
    .attr('y2', d => w/2 + w * d.j)
    ;

    setTimeout(function() {
      svg.selectAll('circle')
      .transition()
    .duration(500)
    .attr('cx', d => w/2 + w * d.i)
    .attr('cy', d => w/2 + w * d.j);
     if (false) svg.selectAll('line')
        .transition()
    .attr('x1', d => w/2 + w * d.i)
    .attr('y1', d => w/2 + w * d.j)
    .duration(500)

      
    }, 1500);
  }


function createWorker(s, cb) {
  const worker = new Worker(window.URL.createObjectURL(new Blob([`
importScripts('https://raw.githack.com/Fil/lap-jv/master/lap.js');
self.onmessage = function(e){
  const m = e.data.m,
        n = m * m,
        data = e.data.data;
  const costs = function(a, k) {
    const d = data[a],
        i = k % m,
        j = (k-i)/m;
    const dx = d[0] - i - 0.5, dy = d[1] - j - 0.5;
    return dx * dx + dy * dy;
  };

  self.postMessage({
    assign: lap(n, costs)
  });
};`], {
     type: "text/javascript"
  })));
  if (typeof cb == 'function') {
    cb(worker);
  }
}
  
  </script>
</body>

lap.js

/************************************************************************
*
*  lap.js -- ported to javascript from

   lap.cpp
   version 1.0 - 4 September 1996
   author: Roy Jonker @ MagicLogic Optimization Inc.
   e-mail: roy_jonker@magiclogic.com

   Code for Linear Assignment Problem, according to 
   
   "A Shortest Augmenting Path Algorithm for Dense and Sparse Linear   
    Assignment Problems," Computing 38, 325-340, 1987
   
   by
   
   R. Jonker and A. Volgenant, University of Amsterdam.
   
*
   PORTED TO JAVASCRIPT 2017-01-02 by Philippe Riviere(fil@rezo.net) 
   CHANGED 2016-05-13 by Yang Yong(yangyongeducation@163.com) in column reduction part according to 
   matlab version of LAPJV algorithm(Copyright (c) 2010, Yi Cao All rights reserved)--
   https://www.mathworks.com/matlabcentral/fileexchange/26836-lapjv-jonker-volgenant-algorithm-for-linear-assignment-problem-v3-0:
*
*************************************************************************/

/* This function is the jv shortest augmenting path algorithm to solve the assignment problem */
function lap(dim, assigncost) {

// input:
// dim        - problem size
// assigncost - cost matrix

// output:
// rowsol     - column assigned to row in solution
// colsol     - row assigned to column in solution
// u          - dual variables, row reduction numbers
// v          - dual variables, column reduction numbers

    const sum = assigncost.map(d => d.reduce((a, b) => a + b, 0)).reduce((a, b) => a + b, 0);
    const BIG = 10000 * (sum / dim);
    const epsilon = (sum / dim) / 10000;
    const rowsol = new Int32Array(dim),
        colsol = new Int32Array(dim),
        u = new Float64Array(dim),
        v = new Float64Array(dim);
    let unassignedfound;
    /* row */
    let i, imin, numfree = 0,
        prvnumfree, f, i0, k, freerow; // *pred, *free
    /* col */
    let j, j1, j2, endofpath, last, low, up; // *collist, *matches
    /* cost */
    let min, h, umin, usubmin, v2; // *d

    const free = new Int32Array(dim);    // list of unassigned rows.
    const collist = new Int32Array(dim); // list of columns to be scanned in various ways.
    const matches = new Int32Array(dim); // counts how many times a row could be assigned.
    const d = new Float64Array(dim);     // 'cost-distance' in augmenting path calculation.
    const pred = new Int32Array(dim);    // row-predecessor of column in augmenting/alternating path.

    // init how many times a row will be assigned in the column reduction.
    for (i = 0; i < dim; i++)
        matches[i] = 0;

    // COLUMN REDUCTION
    for (j = dim; j--;) // reverse order gives better results.
    {
        // find minimum cost over rows.
        min = assigncost[0][j];
        imin = 0;
        for (i = 1; i < dim; i++)
            if (assigncost[i][j] < min) {
                min = assigncost[i][j];
                imin = i;
            }
        v[j] = min;
        if (++matches[imin] == 1) {
            // init assignment if minimum row assigned for first time.
            rowsol[imin] = j;
            colsol[j] = imin;
        } else if (v[j] < v[rowsol[imin]]) {
            j1 = rowsol[imin];
            rowsol[imin] = j;
            colsol[j] = imin;
            colsol[j1] = -1;
        } else
            colsol[j] = -1; // row already assigned, column not assigned.
    }

    // REDUCTION TRANSFER
    for (i = 0; i < dim; i++)
        if (matches[i] == 0) // fill list of unassigned 'free' rows.
            free[numfree++] = i;
        else
    if (matches[i] == 1) // transfer reduction from rows that are assigned once.
    {
        j1 = rowsol[i];
        min = BIG;
        for (j = 0; j < dim; j++)
            if (j != j1)
                if (assigncost[i][j] - v[j] < min + epsilon)
                    min = assigncost[i][j] - v[j];
        v[j1] = v[j1] - min;
    }

    // AUGMENTING ROW REDUCTION
    let loopcnt = 0; // do-loop to be done twice.
    do {
        loopcnt++;

        // scan all free rows.
        // in some cases, a free row may be replaced with another one to be scanned next.
        k = 0;
        prvnumfree = numfree;
        numfree = 0; // start list of rows still free after augmenting row reduction.
        while (k < prvnumfree) {
            i = free[k];
            k++;

            // find minimum and second minimum reduced cost over columns.
            umin = assigncost[i][0] - v[0];
            j1 = 0;
            usubmin = BIG;
            for (j = 1; j < dim; j++) {
                h = assigncost[i][j] - v[j];
                if (h < usubmin)
                    if (h >= umin) {
                        usubmin = h;
                        j2 = j;
                    } else {
                        usubmin = umin;
                        umin = h;
                        j2 = j1;
                        j1 = j;
                    }
            }

            i0 = colsol[j1];
            if (umin < usubmin + epsilon)
            //         change the reduction of the minimum column to increase the minimum
            //         reduced cost in the row to the subminimum.
                v[j1] = v[j1] - (usubmin + epsilon - umin);
            else // minimum and subminimum equal.
            if (i0 > -1) // minimum column j1 is assigned.
            {
                // swap columns j1 and j2, as j2 may be unassigned.
                j1 = j2;
                i0 = colsol[j2];
            }

            // (re-)assign i to j1, possibly de-assigning an i0.
            rowsol[i] = j1;
            colsol[j1] = i;

            if (i0 > -1) // minimum column j1 assigned earlier.
                if (umin < usubmin)
                // put in current k, and go back to that k.
                // continue augmenting path i - j1 with i0.
                    free[--k] = i0;
                else
                // no further augmenting reduction possible.
                // store i0 in list of free rows for next phase.
                    free[numfree++] = i0;
        }
    }
    while (loopcnt < 2); // repeat once.

    // AUGMENT SOLUTION for each free row.
    for (f = 0; f < numfree; f++) {
        freerow = free[f]; // start row of augmenting path.

        // Dijkstra shortest path algorithm.
        // runs until unassigned column added to shortest path tree.
        for (j = dim; j--;) {
            d[j] = assigncost[freerow][j] - v[j];
            pred[j] = freerow;
            collist[j] = j; // init column list.
        }

        low = 0; // columns in 0..low-1 are ready, now none.
        up = 0; // columns in low..up-1 are to be scanned for current minimum, now none.
        // columns in up..dim-1 are to be considered later to find new minimum,
        // at this stage the list simply contains all columns
        unassignedfound = false;
        do {
            if (up == low) // no more columns to be scanned for current minimum.
            {
                last = low - 1;

                // scan columns for up..dim-1 to find all indices for which new minimum occurs.
                // store these indices between low..up-1 (increasing up).
                min = d[collist[up++]];
                for (k = up; k < dim; k++) {
                    j = collist[k];
                    h = d[j];
                    if (h <= min) {
                        if (h < min) // new minimum.
                        {
                            up = low; // restart list at index low.
                            min = h;
                        }
                        // new index with same minimum, put on undex up, and extend list.
                        collist[k] = collist[up];
                        collist[up++] = j;
                    }
                }
                // check if any of the minimum columns happens to be unassigned.
                // if so, we have an augmenting path right away.
                for (k = low; k < up; k++)
                    if (colsol[collist[k]] < 0) {
                        endofpath = collist[k];
                        unassignedfound = true;
                        break;
                    }
            }

            if (!unassignedfound) {
                // update 'distances' between freerow and all unscanned columns, via next scanned column.
                j1 = collist[low];
                low++;
                i = colsol[j1];
                h = assigncost[i][j1] - v[j1] - min;

                for (k = up; k < dim; k++) {
                    j = collist[k];
                    v2 = assigncost[i][j] - v[j] - h;
                    if (v2 < d[j]) {
                        pred[j] = i;
                        if (v2 == min) // new column found at same minimum value
                            if (colsol[j] < 0) {
                                // if unassigned, shortest augmenting path is complete.
                                endofpath = j;
                                unassignedfound = true;
                                break;
                            }
                            // else add to list to be scanned right away.
                            else {
                                collist[k] = collist[up];
                                collist[up++] = j;
                            }
                        d[j] = v2;
                    }
                }
            }
        }
        while (!unassignedfound);

        // update column prices.
        for (k = last + 1; k--;) {
            j1 = collist[k];
            v[j1] = v[j1] + d[j1] - min;
        }

        // reset row and column assignments along the alternating path.
        do {
            i = pred[endofpath];
            colsol[endofpath] = i;
            j1 = endofpath;
            endofpath = rowsol[i];
            rowsol[i] = j1;
        }
        while (i != freerow);
    }

    // calculate optimal cost.
    let lapcost = 0;
    for (i = dim; i--;) {
        j = rowsol[i];
        u[i] = assigncost[i][j] - v[j];
        lapcost = lapcost + assigncost[i][j];
    }

    return {
        cost: lapcost,
        row: rowsol,
        col: colsol,
        u: u,
        v: v
    };
}