1. #forked from https://gist.github.com/patilv/7073094
  2. library(rCharts)
  3. library(reshape2)
  4. findata=read.csv("https://raw.github.com/patilv/rChartsTutorials/master/findata.csv")
  5. # These are data regarding NCAA athletic department expenses at public universities. Please see the blog post where these charts were originally used
  6. # regarding more details on the origins of these data.: //analyticsandvisualization.blogspot.com/2013/10/subsidies-revenues-and-expenses-of-ncaa.html
  7. findata=findata[,-c(1:3)] # removing first dummy column - the csv quirk - second column on Rank, and third column on School. Retaining only numeric vars here
  8. corrmatrix<-cor(findata) #store corr matrix
  9. # The following steps are generic and can all be placed in a function with some tweaks to customize output
  10. corrdata=as.data.frame(corrmatrix)
  11. corrdata$Variable1=names(corrdata)
  12. corrdatamelt=melt(corrdata,id="Variable1")
  13. names(corrdatamelt)=c("Variable1","Variable2","CorrelationCoefficient")
  14. corrmatplot = dPlot(
  15. Variable2 ~ Variable1
  16. ,z = "CorrelationCoefficient"
  17. ,data = corrdatamelt
  18. ,type = 'bubble'
  19. ,height = 350
  20. ,width = 500
  21. ,bounds = list( x = 150, y = 50, width = 330, height = 200)
  22. )
  23. corrmatplot$yAxis ( type= "addCategoryAxis" )
  24. corrmatplot$zAxis (
  25. type= "addMeasureAxis"
  26. , outputFormat = "0.5f"
  27. , overrideMin = -1
  28. , overrideMax = 1
  29. )
  30. corrmatplot$colorAxis(
  31. type = "addColorAxis"
  32. ,colorSeries = 'CorrelationCoefficient'
  33. ,palette = c('red','white','blue')
  34. ,outputFormat = "0.5f"
  35. )
  36. corrmatplot
  37. #now do the bar
  38. #corrmatplot$set(type = "bar")
  39. #corrmatplot