block by dribnet e70ea990df122f2a505fd5f7c5e1ccd5

Kitaoka's blue tilt

Full Screen

Kitaoka’s blue tilt

Akiyoshi Kitaoka’s illusion Horizontally aligned bluish rows appear to tilt alternately made dynamic with p5.js.

This version will render and save a higher quality animated gif on mouseclick.

index.html

<head>
    <script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/0.7.2/p5.js"></script>
    <script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/0.7.2/addons/p5.dom.js"></script>
    <script src="z_hsluv-0.0.3.min.js"  type="text/javascript"></script>
    <script language="javascript" type="text/javascript" src="z_purview_helper.js"></script>
    <script language="javascript" type="text/javascript" src="z_color_helper.js"></script>
    <script type="text/javascript" src="LZWEncoder.js"></script>
    <script type="text/javascript" src="NeuQuant.js"></script>
    <script type="text/javascript" src="GIFEncoder.js"></script>
    <script type="text/javascript" src="b64.js"></script>
    <script type="text/javascript" src="z_recorder.js"></script>
    <script language="javascript" type="text/javascript" src="sketch.js"></script>
</head>
<body style="background-color:white">
</body>

GIFEncoder.js

/**
 * This class lets you encode animated GIF files
 * Base class :  http://www.java2s.com/Code/Java/2D-Graphics-GUI/AnimatedGifEncoder.htm
 * @author Kevin Weiner (original Java version - kweiner@fmsware.com)
 * @author Thibault Imbert (AS3 version - bytearray.org)
 * @author Kevin Kwok (JavaScript version - https://github.com/antimatter15/jsgif)
 * @version 0.1 AS3 implementation
 */

GIFEncoder = function() {

	for (var i = 0, chr = {}; i < 256; i++)
		chr[i] = String.fromCharCode(i);

	function ByteArray() {
		this.bin = [];
	}

	ByteArray.prototype.getData = function() {
		for (var v = '', l = this.bin.length, i = 0; i < l; i++)
			v += chr[this.bin[i]];
		return v;
	};

	ByteArray.prototype.writeByte = function(val) {
		this.bin.push(val);
	};

	ByteArray.prototype.writeUTFBytes = function(string) {
		for (var l = string.length, i = 0; i < l; i++)
			this.writeByte(string.charCodeAt(i));
	};

	ByteArray.prototype.writeBytes = function(array, offset, length) {
		for (var l = length || array.length, i = offset || 0; i < l; i++)
			this.writeByte(array[i]);
	};

	var exports = {};
	var width; // image size
	var height;
	var transparent = null; // transparent color if given
	var transIndex; // transparent index in color table
	var repeat = -1; // no repeat
	var delay = 0; // frame delay (hundredths)
	var started = false; // ready to output frames
	var out;
	var image; // current frame
	var pixels; // BGR byte array from frame
	var indexedPixels; // converted frame indexed to palette
	var colorDepth; // number of bit planes
	var colorTab; // RGB palette
	var usedEntry = []; // active palette entries
	var palSize = 7; // color table size (bits-1)
	var dispose = -1; // disposal code (-1 = use default)
	var closeStream = false; // close stream when finished
	var firstFrame = true;
	var sizeSet = false; // if false, get size from first frame
	var sample = 10; // default sample interval for quantizer
	var comment = "Generated by jsgif (https://github.com/antimatter15/jsgif/)"; // default comment for generated gif

	/**
	 * Sets the delay time between each frame, or changes it for subsequent frames
	 * (applies to last frame added)
	 * int delay time in milliseconds
	 * @param ms
	 */

	var setDelay = exports.setDelay = function setDelay(ms) {
		delay = Math.round(ms / 10);
	};

	/**
	 * Sets the GIF frame disposal code for the last added frame and any
	 *
	 * subsequent frames. Default is 0 if no transparent color has been set,
	 * otherwise 2.
	 * @param code
	 * int disposal code.
	 */

	var setDispose = exports.setDispose = function setDispose(code) {
		if (code >= 0) dispose = code;
	};

	/**
	 * Sets the number of times the set of GIF frames should be played. Default is
	 * 1; 0 means play indefinitely. Must be invoked before the first image is
	 * added.
	 *
	 * @param iter
	 * int number of iterations.
	 * @return
	 */

	var setRepeat = exports.setRepeat = function setRepeat(iter) {
		if (iter >= 0) repeat = iter;
	};

	/**
	 * Sets the transparent color for the last added frame and any subsequent
	 * frames. Since all colors are subject to modification in the quantization
	 * process, the color in the final palette for each frame closest to the given
	 * color becomes the transparent color for that frame. May be set to null to
	 * indicate no transparent color.
	 * @param
	 * Color to be treated as transparent on display.
	 */

	var setTransparent = exports.setTransparent = function setTransparent(c) {
		transparent = c;
	};


	/**
	 * Sets the comment for the block comment
	 * @param
	 * string to be insterted as comment
	 */

	var setComment = exports.setComment = function setComment(c) {
		comment = c;
	};



	/**
	 * The addFrame method takes an incoming BitmapData object to create each frames
	 * @param
	 * BitmapData object to be treated as a GIF's frame
	 */

	var addFrame = exports.addFrame = function addFrame(im, is_imageData) {

		if ((im === null) || !started || out === null) {
			throw new Error("Please call start method before calling addFrame");
		}

		var ok = true;

		try {
			if (!is_imageData) {
				image = im.getImageData(0, 0, im.canvas.width, im.canvas.height).data;
				if (!sizeSet) setSize(im.canvas.width, im.canvas.height);
			} else {
				if(im instanceof ImageData) {
					image = im.data;
					if(!sizeset || width!=im.width || height!=im.height) {
						setSize(im.width,im.height);
					} else {
						
					}
				} else if(im instanceof Uint8ClampedArray) {
					if(im.length==(width*height*4)) {
						image=im;
					} else {
						console.log("Please set the correct size: ImageData length mismatch");
						ok=false;
					}
				} else {
					console.log("Please provide correct input");
					ok=false;
				}
			}
			getImagePixels(); // convert to correct format if necessary
			analyzePixels(); // build color table & map pixels

			if (firstFrame) {
				writeLSD(); // logical screen descriptior
				writePalette(); // global color table
				if (repeat >= 0) {
					// use NS app extension to indicate reps
					writeNetscapeExt();
				}
			}

			writeGraphicCtrlExt(); // write graphic control extension
			if (comment !== '') {
				writeCommentExt(); // write comment extension
			}
			writeImageDesc(); // image descriptor
			if (!firstFrame) writePalette(); // local color table
			writePixels(); // encode and write pixel data
			firstFrame = false;
		} catch (e) {
			ok = false;
		}

		return ok;
	};
	
	/**
	* @description: Downloads the encoded gif with the given name
	* No need of any conversion from the stream data (out) to base64
	* Solves the issue of large file sizes when there are more frames
	* and does not involve in creation of any temporary data in the process
	* so no wastage of memory, and speeds up the process of downloading
	* to just calling this function.
	* @parameter {String} filename filename used for downloading the gif
	*/
	
	var download = exports.download = function download(filename) {
		if(out===null || closeStream==false) {
			console.log("Please call start method and add frames and call finish method before calling download"); 
		} else {
			filename= filename !== undefined ? ( filename.endsWith(".gif")? filename: filename+".gif" ): "download.gif";
			var templink = document.createElement("a");
			templink.download=filename;
			templink.href= URL.createObjectURL(new Blob([new Uint8Array(out.bin)], {type : "image/gif" } ));
			templink.click();
		}
	}

	/**
	 * Adds final trailer to the GIF stream, if you don't call the finish method
	 * the GIF stream will not be valid.
	 */

	var finish = exports.finish = function finish() {

		if (!started) return false;

		var ok = true;
		started = false;

		try {
			out.writeByte(0x3b); // gif trailer
			closeStream=true;
		} catch (e) {
			ok = false;
		}

		return ok;
	};

	/**
	 * Resets some members so that a new stream can be started.
	 * This method is actually called by the start method
	 */

	var reset = function reset() {

		// reset for subsequent use
		transIndex = 0;
		image = null;
		pixels = null;
		indexedPixels = null;
		colorTab = null;
		closeStream = false;
		firstFrame = true;
	};

	/**
	 * * Sets frame rate in frames per second. Equivalent to
	 * <code>setDelay(1000/fps)</code>.
	 * @param fps
	 * float frame rate (frames per second)
	 */

	var setFrameRate = exports.setFrameRate = function setFrameRate(fps) {
		if (fps != 0xf) delay = Math.round(100 / fps);
	};

	/**
	 * Sets quality of color quantization (conversion of images to the maximum 256
	 * colors allowed by the GIF specification). Lower values (minimum = 1)
	 * produce better colors, but slow processing significantly. 10 is the
	 * default, and produces good color mapping at reasonable speeds. Values
	 * greater than 20 do not yield significant improvements in speed.
	 * @param quality
	 * int greater than 0.
	 * @return
	 */

	var setQuality = exports.setQuality = function setQuality(quality) {
		if (quality < 1) quality = 1;
		sample = quality;
	};

	/**
	 * Sets the GIF frame size. The default size is the size of the first frame
	 * added if this method is not invoked.
	 * @param w
	 * int frame width.
	 * @param h
	 * int frame width.
	 */

	var setSize = exports.setSize = function setSize(w, h) {

		if (started && !firstFrame) return;
		width = w;
		height = h;
		if (width < 1) width = 320;
		if (height < 1) height = 240;
		sizeSet = true;
	};

	/**
	 * Initiates GIF file creation on the given stream.
	 * @param os
	 * OutputStream on which GIF images are written.
	 * @return false if initial write failed.
	 */

	var start = exports.start = function start() {

		reset();
		var ok = true;
		closeStream = false;
		out = new ByteArray();
		try {
			out.writeUTFBytes("GIF89a"); // header
		} catch (e) {
			ok = false;
		}

		return started = ok;
	};

	var cont = exports.cont = function cont() {

		reset();
		var ok = true;
		closeStream = false;
		out = new ByteArray();

		return started = ok;
	};

	/**
	 * Analyzes image colors and creates color map.
	 */

	var analyzePixels = function analyzePixels() {

		var len = pixels.length;
		var nPix = len / 3;
		indexedPixels = [];
		var nq = new NeuQuant(pixels, len, sample);

		// initialize quantizer
		colorTab = nq.process(); // create reduced palette

		// map image pixels to new palette
		var k = 0;
		for (var j = 0; j < nPix; j++) {
			var index = nq.map(pixels[k++] & 0xff, pixels[k++] & 0xff, pixels[k++] & 0xff);
			usedEntry[index] = true;
			indexedPixels[j] = index;
		}

		pixels = null;
		colorDepth = 8;
		palSize = 7;

		// get closest match to transparent color if specified
		if (transparent !== null) {
			transIndex = findClosest(transparent);
		}
	};

	/**
	 * Returns index of palette color closest to c
	 */

	var findClosest = function findClosest(c) {

		if (colorTab === null) return -1;
		var r = (c & 0xFF0000) >> 16;
		var g = (c & 0x00FF00) >> 8;
		var b = (c & 0x0000FF);
		var minpos = 0;
		var dmin = 256 * 256 * 256;
		var len = colorTab.length;

		for (var i = 0; i < len;) {
			var dr = r - (colorTab[i++] & 0xff);
			var dg = g - (colorTab[i++] & 0xff);
			var db = b - (colorTab[i] & 0xff);
			var d = dr * dr + dg * dg + db * db;
			var index = i / 3;
			if (usedEntry[index] && (d < dmin)) {
				dmin = d;
				minpos = index;
			}
			i++;
		}
		return minpos;
	};

	/**
	 * Extracts image pixels into byte array "pixels
	 */

	var getImagePixels = function getImagePixels() {
		var w = width;
		var h = height;
		pixels = [];
		var data = image;
		var count = 0;

		for (var i = 0; i < h; i++) {

			for (var j = 0; j < w; j++) {

				var b = (i * w * 4) + j * 4;
				pixels[count++] = data[b];
				pixels[count++] = data[b + 1];
				pixels[count++] = data[b + 2];

			}

		}
	};

	/**
	 * Writes Graphic Control Extension
	 */

	var writeGraphicCtrlExt = function writeGraphicCtrlExt() {
		out.writeByte(0x21); // extension introducer
		out.writeByte(0xf9); // GCE label
		out.writeByte(4); // data block size
		var transp;
		var disp;
		if (transparent === null) {
			transp = 0;
			disp = 0; // dispose = no action
		} else {
			transp = 1;
			disp = 2; // force clear if using transparent color
		}
		if (dispose >= 0) {
			disp = dispose & 7; // user override
		}
		disp <<= 2;
		// packed fields
		out.writeByte(0 | // 1:3 reserved
			disp | // 4:6 disposal
			0 | // 7 user input - 0 = none
			transp); // 8 transparency flag

		WriteShort(delay); // delay x 1/100 sec
		out.writeByte(transIndex); // transparent color index
		out.writeByte(0); // block terminator
	};

	/**
	 * Writes Comment Extention
	 */

	var writeCommentExt = function writeCommentExt() {
		out.writeByte(0x21); // extension introducer
		out.writeByte(0xfe); // comment label
		out.writeByte(comment.length); // Block Size (s)
		out.writeUTFBytes(comment);
		out.writeByte(0); // block terminator
	};


	/**
	 * Writes Image Descriptor
	 */

	var writeImageDesc = function writeImageDesc() {

		out.writeByte(0x2c); // image separator
		WriteShort(0); // image position x,y = 0,0
		WriteShort(0);
		WriteShort(width); // image size
		WriteShort(height);

		// packed fields
		if (firstFrame) {
			// no LCT - GCT is used for first (or only) frame
			out.writeByte(0);
		} else {
			// specify normal LCT
			out.writeByte(0x80 | // 1 local color table 1=yes
				0 | // 2 interlace - 0=no
				0 | // 3 sorted - 0=no
				0 | // 4-5 reserved
				palSize); // 6-8 size of color table
		}
	};

	/**
	 * Writes Logical Screen Descriptor
	 */

	var writeLSD = function writeLSD() {

		// logical screen size
		WriteShort(width);
		WriteShort(height);
		// packed fields
		out.writeByte((0x80 | // 1 : global color table flag = 1 (gct used)
			0x70 | // 2-4 : color resolution = 7
			0x00 | // 5 : gct sort flag = 0
			palSize)); // 6-8 : gct size

		out.writeByte(0); // background color index
		out.writeByte(0); // pixel aspect ratio - assume 1:1
	};

	/**
	 * Writes Netscape application extension to define repeat count.
	 */

	var writeNetscapeExt = function writeNetscapeExt() {
		out.writeByte(0x21); // extension introducer
		out.writeByte(0xff); // app extension label
		out.writeByte(11); // block size
		out.writeUTFBytes("NETSCAPE" + "2.0"); // app id + auth code
		out.writeByte(3); // sub-block size
		out.writeByte(1); // loop sub-block id
		WriteShort(repeat); // loop count (extra iterations, 0=repeat forever)
		out.writeByte(0); // block terminator
	};

	/**
	 * Writes color table
	 */

	var writePalette = function writePalette() {
		out.writeBytes(colorTab);
		var n = (3 * 256) - colorTab.length;
		for (var i = 0; i < n; i++) out.writeByte(0);
	};

	var WriteShort = function WriteShort(pValue) {
		out.writeByte(pValue & 0xFF);
		out.writeByte((pValue >> 8) & 0xFF);
	};

	/**
	 * Encodes and writes pixel data
	 */

	var writePixels = function writePixels() {
		var myencoder = new LZWEncoder(width, height, indexedPixels, colorDepth);
		myencoder.encode(out);
	};

	/**
	 * Retrieves the GIF stream
	 */

	var stream = exports.stream = function stream() {
		return out;
	};

	var setProperties = exports.setProperties = function setProperties(has_start, is_first) {
		started = has_start;
		firstFrame = is_first;
	};

	return exports;

};

LZWEncoder.js

/**
 * This class handles LZW encoding
 * Adapted from Jef Poskanzer's Java port by way of J. M. G. Elliott.
 * @author Kevin Weiner (original Java version - kweiner@fmsware.com)
 * @author Thibault Imbert (AS3 version - bytearray.org)
 * @author Kevin Kwok (JavaScript version - https://github.com/antimatter15/jsgif)
 * @version 0.1 AS3 implementation
 */

LZWEncoder = function() {

	var exports = {};
	var EOF = -1;
	var imgW;
	var imgH;
	var pixAry;
	var initCodeSize;
	var remaining;
	var curPixel;

	// GIFCOMPR.C - GIF Image compression routines
	// Lempel-Ziv compression based on 'compress'. GIF modifications by
	// David Rowley (mgardi@watdcsu.waterloo.edu)
	// General DEFINEs

	var BITS = 12;
	var HSIZE = 5003; // 80% occupancy

	// GIF Image compression - modified 'compress'
	// Based on: compress.c - File compression ala IEEE Computer, June 1984.
	// By Authors: Spencer W. Thomas (decvax!harpo!utah-cs!utah-gr!thomas)
	// Jim McKie (decvax!mcvax!jim)
	// Steve Davies (decvax!vax135!petsd!peora!srd)
	// Ken Turkowski (decvax!decwrl!turtlevax!ken)
	// James A. Woods (decvax!ihnp4!ames!jaw)
	// Joe Orost (decvax!vax135!petsd!joe)

	var n_bits; // number of bits/code
	var maxbits = BITS; // user settable max # bits/code
	var maxcode; // maximum code, given n_bits
	var maxmaxcode = 1 << BITS; // should NEVER generate this code
	var htab = [];
	var codetab = [];
	var hsize = HSIZE; // for dynamic table sizing
	var free_ent = 0; // first unused entry

	// block compression parameters -- after all codes are used up,
	// and compression rate changes, start over.

	var clear_flg = false;

	// Algorithm: use open addressing double hashing (no chaining) on the
	// prefix code / next character combination. We do a variant of Knuth's
	// algorithm D (vol. 3, sec. 6.4) along with G. Knott's relatively-prime
	// secondary probe. Here, the modular division first probe is gives way
	// to a faster exclusive-or manipulation. Also do block compression with
	// an adaptive reset, whereby the code table is cleared when the compression
	// ratio decreases, but after the table fills. The variable-length output
	// codes are re-sized at this point, and a special CLEAR code is generated
	// for the decompressor. Late addition: construct the table according to
	// file size for noticeable speed improvement on small files. Please direct
	// questions about this implementation to ames!jaw.

	var g_init_bits;
	var ClearCode;
	var EOFCode;

	// output
	// Output the given code.
	// Inputs:
	// code: A n_bits-bit integer. If == -1, then EOF. This assumes
	// that n_bits =< wordsize - 1.
	// Outputs:
	// Outputs code to the file.
	// Assumptions:
	// Chars are 8 bits long.
	// Algorithm:
	// Maintain a BITS character long buffer (so that 8 codes will
	// fit in it exactly). Use the VAX insv instruction to insert each
	// code in turn. When the buffer fills up empty it and start over.

	var cur_accum = 0;
	var cur_bits = 0;
	var masks = [0x0000, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF, 0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF];

	// Number of characters so far in this 'packet'
	var a_count;

	// Define the storage for the packet accumulator
	var accum = [];

	var LZWEncoder = exports.LZWEncoder = function LZWEncoder(width, height, pixels, color_depth) {
		imgW = width;
		imgH = height;
		pixAry = pixels;
		initCodeSize = Math.max(2, color_depth);
	};

	// Add a character to the end of the current packet, and if it is 254
	// characters, flush the packet to disk.
	var char_out = function char_out(c, outs) {
		accum[a_count++] = c;
		if (a_count >= 254) flush_char(outs);
	};

	// Clear out the hash table
	// table clear for block compress

	var cl_block = function cl_block(outs) {
		cl_hash(hsize);
		free_ent = ClearCode + 2;
		clear_flg = true;
		output(ClearCode, outs);
	};

	// reset code table
	var cl_hash = function cl_hash(hsize) {
		for (var i = 0; i < hsize; ++i) htab[i] = -1;
	};

	var compress = exports.compress = function compress(init_bits, outs) {

		var fcode;
		var i; /* = 0 */
		var c;
		var ent;
		var disp;
		var hsize_reg;
		var hshift;

		// Set up the globals: g_init_bits - initial number of bits
		g_init_bits = init_bits;

		// Set up the necessary values
		clear_flg = false;
		n_bits = g_init_bits;
		maxcode = MAXCODE(n_bits);

		ClearCode = 1 << (init_bits - 1);
		EOFCode = ClearCode + 1;
		free_ent = ClearCode + 2;

		a_count = 0; // clear packet

		ent = nextPixel();

		hshift = 0;
		for (fcode = hsize; fcode < 65536; fcode *= 2)
			++hshift;
		hshift = 8 - hshift; // set hash code range bound

		hsize_reg = hsize;
		cl_hash(hsize_reg); // clear hash table

		output(ClearCode, outs);

		outer_loop: while ((c = nextPixel()) != EOF) {
			fcode = (c << maxbits) + ent;
			i = (c << hshift) ^ ent; // xor hashing

			if (htab[i] == fcode) {
				ent = codetab[i];
				continue;
			}

			else if (htab[i] >= 0) { // non-empty slot

				disp = hsize_reg - i; // secondary hash (after G. Knott)
				if (i === 0) disp = 1;

				do {
					if ((i -= disp) < 0)
						i += hsize_reg;

					if (htab[i] == fcode) {
						ent = codetab[i];
						continue outer_loop;
					}
				} while (htab[i] >= 0);
			}

			output(ent, outs);
			ent = c;
			if (free_ent < maxmaxcode) {
				codetab[i] = free_ent++; // code -> hashtable
				htab[i] = fcode;
			}
			else cl_block(outs);
		}

		// Put out the final code.
		output(ent, outs);
		output(EOFCode, outs);
	};

	// ----------------------------------------------------------------------------
	var encode = exports.encode = function encode(os) {
		os.writeByte(initCodeSize); // write "initial code size" byte
		remaining = imgW * imgH; // reset navigation variables
		curPixel = 0;
		compress(initCodeSize + 1, os); // compress and write the pixel data
		os.writeByte(0); // write block terminator
	};

	// Flush the packet to disk, and reset the accumulator
	var flush_char = function flush_char(outs) {
		if (a_count > 0) {
			outs.writeByte(a_count);
			outs.writeBytes(accum, 0, a_count);
			a_count = 0;
		}
	};

	var MAXCODE = function MAXCODE(n_bits) {
		return (1 << n_bits) - 1;
	};

	// ----------------------------------------------------------------------------
	// Return the next pixel from the image
	// ----------------------------------------------------------------------------

	var nextPixel = function nextPixel() {
		if (remaining === 0) return EOF;
		--remaining;
		var pix = pixAry[curPixel++];
		return pix & 0xff;
	};

	var output = function output(code, outs) {

		cur_accum &= masks[cur_bits];

		if (cur_bits > 0) cur_accum |= (code << cur_bits);
		else cur_accum = code;

		cur_bits += n_bits;

		while (cur_bits >= 8) {
			char_out((cur_accum & 0xff), outs);
			cur_accum >>= 8;
			cur_bits -= 8;
		}

		// If the next entry is going to be too big for the code size,
		// then increase it, if possible.

		if (free_ent > maxcode || clear_flg) {

			if (clear_flg) {

				maxcode = MAXCODE(n_bits = g_init_bits);
				clear_flg = false;

			} else {

				++n_bits;
				if (n_bits == maxbits) maxcode = maxmaxcode;
				else maxcode = MAXCODE(n_bits);
			}
		}

		if (code == EOFCode) {

			// At EOF, write the rest of the buffer.
			while (cur_bits > 0) {
				char_out((cur_accum & 0xff), outs);
				cur_accum >>= 8;
				cur_bits -= 8;
			}

			flush_char(outs);
		}
	};

	LZWEncoder.apply(this, arguments);
	return exports;
};

NeuQuant.js

/*
 * NeuQuant Neural-Net Quantization Algorithm
 * ------------------------------------------
 *
 * Copyright (c) 1994 Anthony Dekker
 *
 * NEUQUANT Neural-Net quantization algorithm by Anthony Dekker, 1994. See
 * "Kohonen neural networks for optimal colour quantization" in "Network:
 * Computation in Neural Systems" Vol. 5 (1994) pp 351-367. for a discussion of
 * the algorithm.
 *
 * Any party obtaining a copy of these files from the author, directly or
 * indirectly, is granted, free of charge, a full and unrestricted irrevocable,
 * world-wide, paid up, royalty-free, nonexclusive right and license to deal in
 * this software and documentation files (the "Software"), including without
 * limitation the rights to use, copy, modify, merge, publish, distribute,
 * sublicense, and/or sell copies of the Software, and to permit persons who
 * receive copies from any such party to do so, with the only requirement being
 * that this copyright notice remain intact.
 */

/*
 * This class handles Neural-Net quantization algorithm
 * @author Kevin Weiner (original Java version - kweiner@fmsware.com)
 * @author Thibault Imbert (AS3 version - bytearray.org)
 * @author Kevin Kwok (JavaScript version - https://github.com/antimatter15/jsgif)
 * @version 0.1 AS3 implementation
 */

NeuQuant = function() {

	var exports = {};
	var netsize = 256; /* number of colours used */

	/* four primes near 500 - assume no image has a length so large */
	/* that it is divisible by all four primes */

	var prime1 = 499;
	var prime2 = 491;
	var prime3 = 487;
	var prime4 = 503;
	var minpicturebytes = (3 * prime4); /* minimum size for input image */

	/*
	 * Program Skeleton ---------------- [select samplefac in range 1..30] [read
	 * image from input file] pic = (unsigned char*) malloc(3*width*height);
	 * initnet(pic,3*width*height,samplefac); learn(); unbiasnet(); [write output
	 * image header, using writecolourmap(f)] inxbuild(); write output image using
	 * inxsearch(b,g,r)
	 */

	/*
	 * Network Definitions -------------------
	 */

	var maxnetpos = (netsize - 1);
	var netbiasshift = 4; /* bias for colour values */
	var ncycles = 100; /* no. of learning cycles */

	/* defs for freq and bias */
	var intbiasshift = 16; /* bias for fractions */
	var intbias = (1 << intbiasshift);
	var gammashift = 10; /* gamma = 1024 */
	var gamma = (1 << gammashift);
	var betashift = 10;
	var beta = (intbias >> betashift); /* beta = 1/1024 */
	var betagamma = (intbias << (gammashift - betashift));

	/* defs for decreasing radius factor */
	var initrad = (netsize >> 3); /* for 256 cols, radius starts */
	var radiusbiasshift = 6; /* at 32.0 biased by 6 bits */
	var radiusbias = (1 << radiusbiasshift);
	var initradius = (initrad * radiusbias); /* and decreases by a */
	var radiusdec = 30; /* factor of 1/30 each cycle */

	/* defs for decreasing alpha factor */
	var alphabiasshift = 10; /* alpha starts at 1.0 */
	var initalpha = (1 << alphabiasshift);
	var alphadec; /* biased by 10 bits */

	/* radbias and alpharadbias used for radpower calculation */
	var radbiasshift = 8;
	var radbias = (1 << radbiasshift);
	var alpharadbshift = (alphabiasshift + radbiasshift);
	var alpharadbias = (1 << alpharadbshift);

	/*
	 * Types and Global Variables --------------------------
	 */

	var thepicture; /* the input image itself */
	var lengthcount; /* lengthcount = H*W*3 */
	var samplefac; /* sampling factor 1..30 */

	// typedef int pixel[4]; /* BGRc */
	var network; /* the network itself - [netsize][4] */
	var netindex = [];

	/* for network lookup - really 256 */
	var bias = [];

	/* bias and freq arrays for learning */
	var freq = [];
	var radpower = [];

	var NeuQuant = exports.NeuQuant = function NeuQuant(thepic, len, sample) {

		var i;
		var p;

		thepicture = thepic;
		lengthcount = len;
		samplefac = sample;

		network = new Array(netsize);

		for (i = 0; i < netsize; i++) {

			network[i] = new Array(4);
			p = network[i];
			p[0] = p[1] = p[2] = (i << (netbiasshift + 8)) / netsize;
			freq[i] = intbias / netsize; /* 1/netsize */
			bias[i] = 0;
		}
	};

	var colorMap = function colorMap() {

		var map = [];
		var index = new Array(netsize);

		for (var i = 0; i < netsize; i++)
			index[network[i][3]] = i;

		var k = 0;
		for (var l = 0; l < netsize; l++) {
			var j = index[l];
			map[k++] = (network[j][0]);
			map[k++] = (network[j][1]);
			map[k++] = (network[j][2]);
		}

		return map;
	};

	/*
	 * Insertion sort of network and building of netindex[0..255] (to do after
	 * unbias)
	 * -------------------------------------------------------------------------------
	 */

	var inxbuild = function inxbuild() {

		var i;
		var j;
		var smallpos;
		var smallval;
		var p;
		var q;
		var previouscol;
		var startpos;

		previouscol = 0;
		startpos = 0;
		for (i = 0; i < netsize; i++) {

			p = network[i];
			smallpos = i;
			smallval = p[1]; /* index on g */

			/* find smallest in i..netsize-1 */
			for (j = i + 1; j < netsize; j++) {

				q = network[j];
				if (q[1] < smallval) { /* index on g */
					smallpos = j;
					smallval = q[1]; /* index on g */
				}
			}
			q = network[smallpos];

			/* swap p (i) and q (smallpos) entries */
			if (i != smallpos) {
				j = q[0];
				q[0] = p[0];
				p[0] = j;
				j = q[1];
				q[1] = p[1];
				p[1] = j;
				j = q[2];
				q[2] = p[2];
				p[2] = j;
				j = q[3];
				q[3] = p[3];
				p[3] = j;
			}

			/* smallval entry is now in position i */

			if (smallval != previouscol) {

				netindex[previouscol] = (startpos + i) >> 1;

				for (j = previouscol + 1; j < smallval; j++) netindex[j] = i;

				previouscol = smallval;
				startpos = i;
			}
		}

		netindex[previouscol] = (startpos + maxnetpos) >> 1;
		for (j = previouscol + 1; j < 256; j++) netindex[j] = maxnetpos; /* really 256 */
	};

	/*
	 * Main Learning Loop ------------------
	 */

	var learn = function learn() {

		var i;
		var j;
		var b;
		var g;
		var r;
		var radius;
		var rad;
		var alpha;
		var step;
		var delta;
		var samplepixels;
		var p;
		var pix;
		var lim;

		if (lengthcount < minpicturebytes) samplefac = 1;

		alphadec = 30 + ((samplefac - 1) / 3);
		p = thepicture;
		pix = 0;
		lim = lengthcount;
		samplepixels = lengthcount / (3 * samplefac);
		delta = (samplepixels / ncycles) | 0;
		alpha = initalpha;
		radius = initradius;

		rad = radius >> radiusbiasshift;
		if (rad <= 1) rad = 0;

		for (i = 0; i < rad; i++) radpower[i] = alpha * (((rad * rad - i * i) * radbias) / (rad * rad));

		if (lengthcount < minpicturebytes) step = 3;

		else if ((lengthcount % prime1) !== 0) step = 3 * prime1;

		else {

			if ((lengthcount % prime2) !== 0) step = 3 * prime2;
			else {
				if ((lengthcount % prime3) !== 0) step = 3 * prime3;
				else step = 3 * prime4;
			}
		}

		i = 0;
		while (i < samplepixels) {

			b = (p[pix + 0] & 0xff) << netbiasshift;
			g = (p[pix + 1] & 0xff) << netbiasshift;
			r = (p[pix + 2] & 0xff) << netbiasshift;
			j = contest(b, g, r);

			altersingle(alpha, j, b, g, r);
			if (rad !== 0) alterneigh(rad, j, b, g, r); /* alter neighbours */

			pix += step;
			if (pix >= lim) pix -= lengthcount;

			i++;

			if (delta === 0) delta = 1;

			if (i % delta === 0) {
				alpha -= alpha / alphadec;
				radius -= radius / radiusdec;
				rad = radius >> radiusbiasshift;

				if (rad <= 1) rad = 0;

				for (j = 0; j < rad; j++) radpower[j] = alpha * (((rad * rad - j * j) * radbias) / (rad * rad));
			}
		}
	};

	/*
	 ** Search for BGR values 0..255 (after net is unbiased) and return colour
	 * index
	 * ----------------------------------------------------------------------------
	 */

	var map = exports.map = function map(b, g, r) {

		var i;
		var j;
		var dist;
		var a;
		var bestd;
		var p;
		var best;

		bestd = 1000; /* biggest possible dist is 256*3 */
		best = -1;
		i = netindex[g]; /* index on g */
		j = i - 1; /* start at netindex[g] and work outwards */

		while ((i < netsize) || (j >= 0)) {

			if (i < netsize) {
				p = network[i];
				dist = p[1] - g; /* inx key */

				if (dist >= bestd) i = netsize; /* stop iter */

				else {

					i++;
					if (dist < 0) dist = -dist;
					a = p[0] - b;
					if (a < 0) a = -a;
					dist += a;

					if (dist < bestd) {
						a = p[2] - r;
						if (a < 0) a = -a;
						dist += a;

						if (dist < bestd) {
							bestd = dist;
							best = p[3];
						}
					}
				}
			}

			if (j >= 0) {

				p = network[j];
				dist = g - p[1]; /* inx key - reverse dif */

				if (dist >= bestd) j = -1; /* stop iter */

				else {

					j--;
					if (dist < 0) dist = -dist;
					a = p[0] - b;
					if (a < 0) a = -a;
					dist += a;

					if (dist < bestd) {
						a = p[2] - r;
						if (a < 0) a = -a;
						dist += a;
						if (dist < bestd) {
							bestd = dist;
							best = p[3];
						}
					}
				}
			}
		}

		return (best);
	};

	var process = exports.process = function process() {
		learn();
		unbiasnet();
		inxbuild();
		return colorMap();
	};

	/*
	 * Unbias network to give byte values 0..255 and record position i to prepare
	 * for sort
	 * -----------------------------------------------------------------------------------
	 */

	var unbiasnet = function unbiasnet() {

		var i;
		var j;

		for (i = 0; i < netsize; i++) {
			network[i][0] >>= netbiasshift;
			network[i][1] >>= netbiasshift;
			network[i][2] >>= netbiasshift;
			network[i][3] = i; /* record colour no */
		}
	};

	/*
	 * Move adjacent neurons by precomputed alpha*(1-((i-j)^2/[r]^2)) in
	 * radpower[|i-j|]
	 * ---------------------------------------------------------------------------------
	 */

	var alterneigh = function alterneigh(rad, i, b, g, r) {

		var j;
		var k;
		var lo;
		var hi;
		var a;
		var m;
		var p;

		lo = i - rad;
		if (lo < -1) lo = -1;

		hi = i + rad;
		if (hi > netsize) hi = netsize;

		j = i + 1;
		k = i - 1;
		m = 1;

		while ((j < hi) || (k > lo)) {
			a = radpower[m++];

			if (j < hi) {
				p = network[j++];

				try {
					p[0] -= (a * (p[0] - b)) / alpharadbias;
					p[1] -= (a * (p[1] - g)) / alpharadbias;
					p[2] -= (a * (p[2] - r)) / alpharadbias;
				} catch (e) {} // prevents 1.3 miscompilation
			}

			if (k > lo) {
				p = network[k--];

				try {
					p[0] -= (a * (p[0] - b)) / alpharadbias;
					p[1] -= (a * (p[1] - g)) / alpharadbias;
					p[2] -= (a * (p[2] - r)) / alpharadbias;
				} catch (e) {}
			}
		}
	};

	/*
	 * Move neuron i towards biased (b,g,r) by factor alpha
	 * ----------------------------------------------------
	 */

	var altersingle = function altersingle(alpha, i, b, g, r) {

		/* alter hit neuron */
		var n = network[i];
		n[0] -= (alpha * (n[0] - b)) / initalpha;
		n[1] -= (alpha * (n[1] - g)) / initalpha;
		n[2] -= (alpha * (n[2] - r)) / initalpha;
	};

	/*
	 * Search for biased BGR values ----------------------------
	 */

	var contest = function contest(b, g, r) {

		/* finds closest neuron (min dist) and updates freq */
		/* finds best neuron (min dist-bias) and returns position */
		/* for frequently chosen neurons, freq[i] is high and bias[i] is negative */
		/* bias[i] = gamma*((1/netsize)-freq[i]) */

		var i;
		var dist;
		var a;
		var biasdist;
		var betafreq;
		var bestpos;
		var bestbiaspos;
		var bestd;
		var bestbiasd;
		var n;

		bestd = ~ (1 << 31);
		bestbiasd = bestd;
		bestpos = -1;
		bestbiaspos = bestpos;

		for (i = 0; i < netsize; i++) {
			n = network[i];
			dist = n[0] - b;
			if (dist < 0) dist = -dist;
			a = n[1] - g;
			if (a < 0) a = -a;
			dist += a;
			a = n[2] - r;
			if (a < 0) a = -a;
			dist += a;

			if (dist < bestd) {
				bestd = dist;
				bestpos = i;
			}

			biasdist = dist - ((bias[i]) >> (intbiasshift - netbiasshift));

			if (biasdist < bestbiasd) {
				bestbiasd = biasdist;
				bestbiaspos = i;
			}

			betafreq = (freq[i] >> betashift);
			freq[i] -= betafreq;
			bias[i] += (betafreq << gammashift);
		}

		freq[bestpos] += beta;
		bias[bestpos] -= betagamma;
		return (bestbiaspos);
	};

	NeuQuant.apply(this, arguments);
	return exports;
};

b64.js

function encode64(input) {
	var output = "", i = 0, l = input.length,
	key = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=", 
	chr1, chr2, chr3, enc1, enc2, enc3, enc4;
	while (i < l) {
		chr1 = input.charCodeAt(i++);
		chr2 = input.charCodeAt(i++);
		chr3 = input.charCodeAt(i++);
		enc1 = chr1 >> 2;
		enc2 = ((chr1 & 3) << 4) | (chr2 >> 4);
		enc3 = ((chr2 & 15) << 2) | (chr3 >> 6);
		enc4 = chr3 & 63;
		if (isNaN(chr2)) enc3 = enc4 = 64;
		else if (isNaN(chr3)) enc4 = 64;
		output = output + key.charAt(enc1) + key.charAt(enc2) + key.charAt(enc3) + key.charAt(enc4);
	}
	return output;
}

sketch.js

let canvasWidth = 960;
let canvasHeight = 500;

const dark_blue = "#0099ff";
const light_blue = "#00ccff";

function setup () {
  createCanvas(960, 500);
  noStroke();
  angleMode(DEGREES);
  // this matches the gif per frame delay
  frameRate(10);
}

let gifRecorder = null;
const loopLength = 80;
const buffersPerFrame = 20;
let recording = false;

function mousePressed() {
  if(gifRecorder == null) {
    recording = true;
    gifRecorder = new p5recorder(loopLength, "blue_tilt.gif", 100, 0, buffersPerFrame);
    // speed up the framerate again
    frameRate(60);
  }
}

function drawSmallBox(posx, posy, size, rot) {
  let s2 = size/2;
  let s4 = size/4;
  push();
  translate(posx, posy);
  rotate(rot);
  fill(255);
  rect(-s2, -s2, size, size);
  fill(0);
  rect(-s2, -s2, s2, s2);
  rect(0, 0, s2, s2);
  pop();
}

const show_debug = false;

function draw () {
  // size of black box
  let box_size = width / 17.0;
  // size of blue box
  let small_box_size = 0.36 * box_size;

  // clear screen
  background(255);

  // draw black boxes (we draw these as just a few long rects)
  fill(0);
  for(let i=0; i<7; i++) {
    let x_offset = box_size * (2*(i+1));
    rect(x_offset, 0, box_size, height);
  }

  // draw all the dark blue boxes
  fill(dark_blue);
  for(let i=0; i<7; i++) {
    let x_offset = 1.5 * box_size + box_size * (2*i);
    for(let j=0; j<4; j++) {
      let y_offset = 1.0 * box_size + box_size * (2*j);
      rect(x_offset, y_offset, box_size, box_size);
    }
  }

  // draw all the light blue boxes
  fill(light_blue);
  for(let i=0; i<7; i++) {
    let x_offset = 2.5 * box_size + box_size * (2*i);
    for(let j=0; j<4; j++) {
      let y_offset = 1.0 * box_size + box_size * (2*j);
      rect(x_offset, y_offset, box_size, box_size);
    }
  }

  let frameMax = loopLength;
  if(recording) {
    frameMax = loopLength * buffersPerFrame;
  }
  let curFrame = frameCount % frameMax;
  let framesPerBeat = frameMax / 8;
  let cur_point = curFrame / framesPerBeat;
  let cur_sec = Math.floor(cur_point);
  let cur_sec_frac = 1000 * (cur_point - cur_sec);
  cur_cycle = cur_sec % 8;
  // print(cur_millis);

  // trickiest math: compute a rotation that cycles every 8 seconds
  // let cur_millis = millis();
  // let cur_sec = Math.floor(cur_millis/1000.0);
  // let cur_sec_frac = cur_millis - (1000*cur_sec);
  // let cur_cycle = cur_sec % 8;
  let rot1 = 135;
  if(cur_cycle < 4) {
    rot1 = rot1 + 90;
  }
  let rot2 = rot1 + 90;
  let extra_rot = 0;
  if (cur_sec % 4 == 3) {
    extra_rot = map(cur_sec_frac, 0, 1000, 0, 90);
    rot1 = rot1 + extra_rot;
    rot2 = rot2 - extra_rot;
  }
  if (show_debug) {
    fill('#ff0000');
    text(cur_cycle, 10, 10);
    text(cur_sec_frac, 10, 30);
    text(extra_rot, 10, 50);
    text(rot1, 10, 70);    
  }

  // now draw all the small boxes with rotation
  for(let i=0; i<14; i++) {
    let x_offset = 2.0 * box_size + 0.5 * (box_size * (2*i));
    for(let j=0; j<4; j++) {
      let y_offset1 = 1.0 * box_size + box_size * (2*j);
      let y_offset2 = 2.0 * box_size + box_size * (2*j);
      if((i+j)%2 != 0) {
        drawSmallBox(x_offset, y_offset1, small_box_size, rot1);
        drawSmallBox(x_offset, y_offset2, small_box_size, rot2);
      }
      else {
        drawSmallBox(x_offset, y_offset1, small_box_size, rot2);
        drawSmallBox(x_offset, y_offset2, small_box_size, rot1);
      }
    }
  }
  if(recording) {
    gifRecorder.addBuffer();
  }
}

function keyTyped() {
  if (key == '!') {
    saveBlocksImages();
  }
  else if (key == '@') {
    saveBlocksImages(true);
  }
}

z_color_helper.js

function fillHsluv(h, s, l) {
  var rgb = hsluv.hsluvToRgb([h, s, l]);
  fill(rgb[0] * 255, rgb[1] * 255, rgb[2] * 255);
}

function strokeHsluv(h, s, l) {
  var rgb = hsluv.hsluvToRgb([h, s, l]);
  stroke(rgb[0] * 255, rgb[1] * 255, rgb[2] * 255);
}

function fillUniform(brightness) {
    fillHsluv(0, 0, brightness);
}

function strokeUniform(brightness) {
    strokeHsluv(0, 0, brightness);    
}

z_hsluv-0.0.3.min.js

(function() {function f(a){var c=[],b=Math.pow(a+16,3)/1560896;b=b>g?b:a/k;for(var d=0;3>d;){var e=d++,h=l[e][0],w=l[e][1];e=l[e][2];for(var x=0;2>x;){var y=x++,z=(632260*e-126452*w)*b+126452*y;c.push({b:(284517*h-94839*e)*b/z,a:((838422*e+769860*w+731718*h)*a*b-769860*y*a)/z})}}return c}function m(a){a=f(a);for(var c=Infinity,b=0;b<a.length;){var d=a[b];++b;c=Math.min(c,Math.abs(d.a)/Math.sqrt(Math.pow(d.b,2)+1))}return c}
function n(a,c){c=c/360*Math.PI*2;a=f(a);for(var b=Infinity,d=0;d<a.length;){var e=a[d];++d;e=e.a/(Math.sin(c)-e.b*Math.cos(c));0<=e&&(b=Math.min(b,e))}return b}function p(a,c){for(var b=0,d=0,e=a.length;d<e;){var h=d++;b+=a[h]*c[h]}return b}function q(a){return.0031308>=a?12.92*a:1.055*Math.pow(a,.4166666666666667)-.055}function r(a){return.04045<a?Math.pow((a+.055)/1.055,2.4):a/12.92}function t(a){return[q(p(l[0],a)),q(p(l[1],a)),q(p(l[2],a))]}
function u(a){a=[r(a[0]),r(a[1]),r(a[2])];return[p(v[0],a),p(v[1],a),p(v[2],a)]}function A(a){var c=a[0],b=a[1];a=c+15*b+3*a[2];0!=a?(c=4*c/a,a=9*b/a):a=c=NaN;b=b<=g?b/B*k:116*Math.pow(b/B,.3333333333333333)-16;return 0==b?[0,0,0]:[b,13*b*(c-C),13*b*(a-D)]}function E(a){var c=a[0];if(0==c)return[0,0,0];var b=a[1]/(13*c)+C;a=a[2]/(13*c)+D;c=8>=c?B*c/k:B*Math.pow((c+16)/116,3);b=0-9*c*b/((b-4)*a-b*a);return[b,c,(9*c-15*a*c-a*b)/(3*a)]}
function F(a){var c=a[0],b=a[1],d=a[2];a=Math.sqrt(b*b+d*d);1E-8>a?b=0:(b=180*Math.atan2(d,b)/Math.PI,0>b&&(b=360+b));return[c,a,b]}function G(a){var c=a[1],b=a[2]/360*2*Math.PI;return[a[0],Math.cos(b)*c,Math.sin(b)*c]}function H(a){var c=a[0],b=a[1];a=a[2];if(99.9999999<a)return[100,0,c];if(1E-8>a)return[0,0,c];b=n(a,c)/100*b;return[a,b,c]}function I(a){var c=a[0],b=a[1];a=a[2];if(99.9999999<c)return[a,0,100];if(1E-8>c)return[a,0,0];var d=n(c,a);return[a,b/d*100,c]}
function J(a){var c=a[0],b=a[1];a=a[2];if(99.9999999<a)return[100,0,c];if(1E-8>a)return[0,0,c];b=m(a)/100*b;return[a,b,c]}function K(a){var c=a[0],b=a[1];a=a[2];if(99.9999999<c)return[a,0,100];if(1E-8>c)return[a,0,0];var d=m(c);return[a,b/d*100,c]}function L(a){for(var c="#",b=0;3>b;){var d=b++;d=Math.round(255*a[d]);var e=d%16;c+=M.charAt((d-e)/16|0)+M.charAt(e)}return c}
function N(a){a=a.toLowerCase();for(var c=[],b=0;3>b;){var d=b++;c.push((16*M.indexOf(a.charAt(2*d+1))+M.indexOf(a.charAt(2*d+2)))/255)}return c}function O(a){return t(E(G(a)))}function P(a){return F(A(u(a)))}function Q(a){return O(H(a))}function R(a){return I(P(a))}function S(a){return O(J(a))}function T(a){return K(P(a))}
var l=[[3.240969941904521,-1.537383177570093,-.498610760293],[-.96924363628087,1.87596750150772,.041555057407175],[.055630079696993,-.20397695888897,1.056971514242878]],v=[[.41239079926595,.35758433938387,.18048078840183],[.21263900587151,.71516867876775,.072192315360733],[.019330818715591,.11919477979462,.95053215224966]],B=1,C=.19783000664283,D=.46831999493879,k=903.2962962,g=.0088564516,M="0123456789abcdef";
window.hsluv={hsluvToRgb:Q,rgbToHsluv:R,hpluvToRgb:S,rgbToHpluv:T,hsluvToHex:function(a){return L(Q(a))},hexToHsluv:function(a){return R(N(a))},hpluvToHex:function(a){return L(S(a))},hexToHpluv:function(a){return T(N(a))},lchToHpluv:K,hpluvToLch:J,lchToHsluv:I,hsluvToLch:H,lchToLuv:G,luvToLch:F,xyzToLuv:A,luvToXyz:E,xyzToRgb:t,rgbToXyz:u,lchToRgb:O,rgbToLch:P};})();

z_purview_helper.js

// note: this file is poorly named - it can generally be ignored.

// helper functions below for supporting blocks/purview

function saveBlocksImages(doZoom) {
  if(doZoom == null) {
    doZoom = false;
  }

  // generate 960x500 preview.jpg of entire canvas
  // TODO: should this be recycled?
  var offscreenCanvas = document.createElement('canvas');
  offscreenCanvas.width = 960;
  offscreenCanvas.height = 500;
  var context = offscreenCanvas.getContext('2d');
  // background is flat white
  context.fillStyle="#FFFFFF";
  context.fillRect(0, 0, 960, 500);
  context.drawImage(this.canvas, 0, 0, 960, 500);
  // save to browser
  var downloadMime = 'image/octet-stream';
  var imageData = offscreenCanvas.toDataURL('image/jpeg');
  imageData = imageData.replace('image/jpeg', downloadMime);
  p5.prototype.downloadFile(imageData, 'preview.jpg', 'jpg');

  // generate 230x120 thumbnail.png centered on mouse
  offscreenCanvas.width = 230;
  offscreenCanvas.height = 120;

  // background is flat white  
  context = offscreenCanvas.getContext('2d');
  context.fillStyle="#FFFFFF";
  context.fillRect(0, 0, 230, 120);

  if(doZoom) {
    // pixelDensity does the right thing on retina displays
    var pd = this._pixelDensity;
    var sx = pd * mouseX - pd * 230/2;
    var sy = pd * mouseY - pd * 120/2;
    var sw = pd * 230;
    var sh = pd * 120;
    // bounds checking - just displace if necessary
    if (sx < 0) {
      sx = 0;
    }
    if (sx > this.canvas.width - sw) {
      sx = this.canvas.width - sw;
    }
    if (sy < 0) {
      sy = 0;
    }
    if (sy > this.canvas.height - sh) {
      sy = this.canvas.height - sh;
    }
    // save to browser
    context.drawImage(this.canvas, sx, sy, sw, sh, 0, 0, 230, 120);
  }
  else {
    // now scaledown
    var full_width = this.canvas.width;
    var full_height = this.canvas.height;
    context.drawImage(this.canvas, 0, 0, full_width, full_height, 0, 0, 230, 120);
  }
  imageData = offscreenCanvas.toDataURL('image/png');
  imageData = imageData.replace('image/png', downloadMime);
  // call this function after 1 second
  setTimeout(function(){
    p5.prototype.downloadFile(imageData, 'thumbnail.png', 'png');
  }, 1000);
}

z_recorder.js


function p5recorder(numFrames, filename, delay, repeat, buffersPerFrame) {
  this.numFrames = numFrames;
  // all other arguments are optional
  if(filename) {
    this.filename = filename;
  }
  else {
    this.filename = "download.gif";
  }
  if(delay) {
    this.delay = delay;
  }
  else {
    this.delay = 25; //go to next frame every 25 milliseconds
  }
  if(repeat) {
    this.repeat = repeat;
  }
  else {
    this.repeat = 0; //0  -> loop forever
  }
  if(buffersPerFrame) {
    this.buffersPerFrame = buffersPerFrame;
  }
  else {
    this.buffersPerFrame = 1;
  }

  this.encoder = new GIFEncoder();
  this.offscreenCanvas = document.createElement('canvas');
  this.offscreenCanvas.width = width;
  this.offscreenCanvas.height = height;
  this.offscreenContext = this.offscreenCanvas.getContext('2d');

  this.framesRecorded = 0;
  this.buffersRecorded = 0;
  this.imageAccumulator = null;
  this.encoder_has_started = false;
  pixelDensity(1);

  this.addBuffer = function() {
    if(!this.encoder_has_started) {
      this.encoder.setRepeat(this.repeat);
      this.encoder.setDelay(this.delay);
      this.encoderResult = this.encoder.start();
      this.encoder_has_started = true;
    }

    let display_text = "Recording: " + (this.framesRecorded+1) + " / " + this.numFrames;
    if (this.framesRecorded < this.numFrames) {
      // background is flat white
      this.offscreenContext.fillStyle="#FFFFFF";
      this.offscreenContext.fillRect(0, 0, width, height);
      this.offscreenContext.drawImage(canvas, 0, 0, width, height);

      if (this.buffersPerFrame > 1) {
        display_text = "Recording: " + (this.buffersRecorded+1) + " / " + this.buffersPerFrame + " : " + (this.framesRecorded+1) + " / " + this.numFrames;
        // each output image is made up of several input frames averaged together
        if (this.buffersRecorded == 0) {
          // initialize a new output Image
          this.imageAccumulator = new Array(width * height);
          for (let i=0; i<width*height; i++) {
            this.imageAccumulator[i] = [0, 0, 0];
          }
        }
        loadPixels();
        for (let i=0; i<pixels.length/4; i++) {
          // print(i);
          // print(imageAccumulator[i])
          // print(pixels[i])
          this.imageAccumulator[i][0] += pixels[i*4+0];
          this.imageAccumulator[i][1] += pixels[i*4+1];
          this.imageAccumulator[i][2] += pixels[i*4+2];
        }
        this.buffersRecorded = this.buffersRecorded + 1;
        if(this.buffersRecorded == this.buffersPerFrame) {
          // record this version and increment framesRecorded
          loadPixels();
          for (let i=0; i<pixels.length/4; i++) {
            pixels[i*4+0] = int(this.imageAccumulator[i][0] * 1.0/this.buffersPerFrame);
            pixels[i*4+1] = int(this.imageAccumulator[i][1] * 1.0/this.buffersPerFrame);
            pixels[i*4+2] = int(this.imageAccumulator[i][2] * 1.0/this.buffersPerFrame);
            pixels[i*4+3] = 255;
          }
          updatePixels();
          this.imageAccumulator = null;

          // reload this version onto the offscreen buffer
          this.offscreenContext.fillStyle="#FFFFFF";
          this.offscreenContext.fillRect(0, 0, width, height);
          this.offscreenContext.drawImage(canvas, 0, 0, width, height);

          this.encoder.addFrame(this.offscreenContext);
          this.framesRecorded = this.framesRecorded + 1;
          this.buffersRecorded = 0;
        }
      }
      else {
        this.encoder.addFrame(this.offscreenContext);
        this.framesRecorded = this.framesRecorded + 1;
      }
      if(this.framesRecorded == this.numFrames) {
        this.encoder.finish();
        this.encoder.download(this.filename);
      }
    }
    else {
        display_text = "Recording: done";
    }
    fill(255, 0, 0);
    textSize(48);
    text(display_text, 50, height-20);
  }
}