Solution to the golang tour’s concurrency exercise testing for equivalent binary trees.
Compare with similiar solution presented in golangbootcamp‘s concurrency chapter.
There can be many different binary trees with the same sequence of values stored at the leaves. For example, here are two binary trees storing the sequence 1, 1, 2, 3, 5, 8, 13.
A function to check whether two binary trees store the same sequence is quite complex in most languages. We’ll use Go’s concurrency and channels to write a simple solution.
This example uses the tree
package, which defines the type:
type Tree struct {
Left *Tree
Value int
Right *Tree
}
Implement the Walk
function.
Test the Walk
function.
The function tree.New(k)
constructs a randomly-structured binary tree holding the values k
, 2k
, 3k
, …, 10k
.
Create a new channel ch
and kick off the walker:
go Walk(tree.New(1), ch)
Then read and print 10 values from the channel. It should be the numbers 1, 2, 3, …, 10.
Implement the Same
function using Walk
to determine whether t1
and t2
store the same values.
Test the Same
function.
Same(tree.New(1),tree.New(1))
should return true
, and Same(tree.New(1),tree.New(2))
should return false
.