block by nitaku 1036b853c3f52b8994a4

Gosper hex tiling irregularity

Full Screen

This experiment creates cells of an hexagonal tiling by following a standard Gosper curve. The drawing highlights groups of 7 and 49 (7^2) cells.

It can be noticed that a standard Gosper curve does not produce nice-looking shapes at each fractal recursion, whereas someone would expect a (quasi-)hexagonal shape. Compare this drawing to the previous example, in which a Node Gosper curve is used to solve this problem.

It seems easy to alter the L-system parameters of the standard Gosper curve to obtain the intended result: adding a cell or two at the beginning of the sequence seems to be enough, but, to the best of our knowledge, it is not sufficient (try changing the axiom and see what happens!). The Node Gosper curve use instead a different set of rules (commented out in the code).

index.js

// Generated by CoffeeScript 1.4.0
(function() {
  var color, fractalize, global, hex_coords, new_hex, redraw;

  global = {};

  /* compute a Lindenmayer system given an axiom, a number of steps and rules
  */


  fractalize = function(config) {
    var char, i, input, output, _i, _j, _len, _ref;
    input = config.axiom;
    for (i = _i = 0, _ref = config.steps; 0 <= _ref ? _i < _ref : _i > _ref; i = 0 <= _ref ? ++_i : --_i) {
      output = '';
      for (_j = 0, _len = input.length; _j < _len; _j++) {
        char = input[_j];
        if (char in config.rules) {
          output += config.rules[char];
        } else {
          output += char;
        }
      }
      input = output;
    }
    return output;
  };

  /* convert a Lindenmayer string into an array of hexagonal coordinates
  */


  hex_coords = function(config) {
    var char, current, dir, dir_i, directions, path, _i, _len, _ref;
    directions = [
      {
        x: +1,
        y: -1,
        z: 0
      }, {
        x: +1,
        y: 0,
        z: -1
      }, {
        x: 0,
        y: +1,
        z: -1
      }, {
        x: -1,
        y: +1,
        z: 0
      }, {
        x: -1,
        y: 0,
        z: +1
      }, {
        x: 0,
        y: -1,
        z: +1
      }
    ];
    /* start the walk from the origin cell, facing east
    */

    path = [
      {
        x: 0,
        y: 0,
        z: 0
      }
    ];
    dir_i = 0;
    _ref = config.fractal;
    for (_i = 0, _len = _ref.length; _i < _len; _i++) {
      char = _ref[_i];
      if (char === '+') {
        dir_i = (dir_i + 1) % directions.length;
      } else if (char === '-') {
        dir_i = dir_i - 1;
        if (dir_i === -1) {
          dir_i = 5;
        }
      } else if (char === 'F') {
        dir = directions[dir_i];
        current = path[path.length - 1];
        path.push({
          x: current.x + dir.x,
          y: current.y + dir.y,
          z: current.z + dir.z
        });
      }
    }
    return path;
  };

  window.main = function() {
    var d, data, dx, dy, gosper, height, hexes, radius, svg, width;
    width = 960;
    height = 500;
    svg = d3.select('body').append('svg').attr('width', width).attr('height', height);
    global.vis = svg.append('g').attr('transform', 'translate(660,360) rotate(120)');
    /* create the Gosper curve
    */

    gosper = fractalize({
      axiom: 'A',
      steps: 3,
      rules: {
        A: 'A+BF++BF-FA--FAFA-BF+',
        B: '-FA+BFBF++BF+FA--FA-B'
      }
    });
    /* convert the curve into coordinates of hex cells
    */

    data = hex_coords({
      fractal: gosper
    });
    /* create the GeoJSON hexes
    */

    hexes = {
      type: 'FeatureCollection',
      features: (function() {
        var _i, _len, _results;
        _results = [];
        for (_i = 0, _len = data.length; _i < _len; _i++) {
          d = data[_i];
          _results.push(new_hex(d));
        }
        return _results;
      })()
    };
    /* custom projection to make hexagons appear regular (y axis is also flipped)
    */

    radius = 12;
    dx = radius * 2 * Math.sin(Math.PI / 3);
    dy = radius * 1.5;
    global.path_generator = d3.geo.path().projection(d3.geo.transform({
      point: function(x, y) {
        return this.stream.point(x * dx / 2, -(y - (2 - (y & 1)) / 3) * dy / 2);
      }
    }));
    /* start the animation
    */

    redraw(hexes.features, 1);
    /* draw the origin
    */

    return global.vis.append('circle').attr('cx', 0).attr('cy', 0).attr('r', 3);
  };

  /* create a new hexagon
  */


  new_hex = function(d) {
    /* conversion from hex coordinates to rect
    */

    var x, y;
    x = 2 * (d.x + d.z / 2.0);
    y = 2 * d.z;
    return {
      type: 'Feature',
      geometry: {
        type: 'Polygon',
        coordinates: [[[x, y + 2], [x + 1, y + 1], [x + 1, y], [x, y - 1], [x - 1, y], [x - 1, y + 1], [x, y + 2]]]
      }
    };
  };

  /* update the drawing, then call again this function till data ends
  */


  color = function(i) {
    var i_49, i_7;
    i_7 = Math.floor(i / 7);
    i_49 = Math.floor(i / 49);
    return d3.hcl((i_7 % 7) * 360 / 7, 30, (function() {
      switch (i_49) {
        case 0:
          return 80;
        case 1:
          return 55;
        case 2:
          return 30;
        case 3:
          return 55;
        case 4:
          return 80;
        case 5:
          return 55;
        case 6:
          return 80;
      }
    })());
  };

  redraw = function(data, size) {
    return global.vis.selectAll('.hex').data(data.slice(0, size)).enter().append('path').attr('class', 'hex').attr('d', global.path_generator).attr('fill', function(d, i) {
      return color(i);
    }).transition().duration(60).each('end', (function() {
      if (size > data.length) {
        return;
      }
      return redraw(data, size + 1);
    }));
  };

}).call(this);

index.html

<!DOCTYPE html>
<html>
    <head>
        <meta charset="utf-8">
        <title>Gosper Hexagon Tiling irregularity</title>
        <link type="text/css" href="index.css" rel="stylesheet"/>
        <script src="//d3js.org/d3.v3.min.js"></script>
        <script src="index.js"></script>
    </head>
    <body onload="main()"></body>
</html>

index.coffee

global = {}

### compute a Lindenmayer system given an axiom, a number of steps and rules ###
fractalize = (config) ->
    input = config.axiom

    for i in [0...config.steps]
        output = ''

        for char in input
            if char of config.rules
                output += config.rules[char]
            else
                output += char

        input = output

    return output

### convert a Lindenmayer string into an array of hexagonal coordinates ###
hex_coords = (config) ->
    directions = [
        {x:+1, y:-1, z: 0},
        {x:+1, y: 0, z:-1},
        {x: 0, y:+1, z:-1},
        {x:-1, y:+1, z: 0},
        {x:-1, y: 0, z:+1},
        {x: 0, y:-1, z:+1}
    ]

    ### start the walk from the origin cell, facing east ###
    path = [{x:0,y:0,z:0}]
    dir_i = 0

    for char in config.fractal
        if char == '+'
            dir_i = (dir_i+1) % directions.length
        else if char == '-'
            dir_i = dir_i-1
            if dir_i == -1
                dir_i = 5
        else if char == 'F'
            dir = directions[dir_i]
            current = path[path.length-1]
            path.push {x:current.x+dir.x, y:current.y+dir.y, z:current.z+dir.z}

    return path

window.main = () ->
    width = 960
    height = 500

    svg = d3.select('body').append('svg')
        .attr('width', width)
        .attr('height', height)

    global.vis = svg.append('g')
        .attr('transform', 'translate(660,360) rotate(120)')

    ### create the Gosper curve ###
    gosper = fractalize
        axiom: 'A'
        steps: 3
        rules:
            A: 'A+BF++BF-FA--FAFA-BF+'
            B: '-FA+BFBF++BF+FA--FA-B'
            # A: 'A-FB--FB-F++AF++A-F+AF+B-'
            # B: '+A-FB-F+B--FB--F+AF++AF+B'

    ### convert the curve into coordinates of hex cells ###
    data = hex_coords
        fractal: gosper

    ### create the GeoJSON hexes ###
    hexes = {
        type: 'FeatureCollection',
        features: (new_hex(d) for d in data)
    }

    ### custom projection to make hexagons appear regular (y axis is also flipped) ###
    radius = 12
    dx = radius * 2 * Math.sin(Math.PI / 3)
    dy = radius * 1.5

    global.path_generator = d3.geo.path()
        .projection d3.geo.transform({
            point: (x,y) -> this.stream.point(x * dx / 2, -(y - (2 - (y & 1)) / 3) * dy / 2)
        })


    ### start the animation ###
    redraw(hexes.features, 1)

    ### draw the origin ###
    global.vis.append('circle')
        .attr('cx', 0)
        .attr('cy', 0)
        .attr('r', 3)

### create a new hexagon ###
new_hex = (d) ->
    ### conversion from hex coordinates to rect ###
    x = 2*(d.x + d.z/2.0)
    y = 2*d.z

    return {
        type: 'Feature',
        geometry: {
            type: 'Polygon',
            coordinates: [[
                [x, y+2],
                [x+1, y+1],
                [x+1, y],
                [x, y-1],
                [x-1, y],
                [x-1, y+1],
                [x, y+2]
            ]]
        }
    }

### update the drawing, then call again this function till data ends ###
color = (i) ->
  i_7 = Math.floor(i/7)
  i_49 = Math.floor(i/49)
  return d3.hcl((i_7%7)*360/7, 30, switch i_49
    when 0 then 80
    when 1 then 55
    when 2 then 30
    when 3 then 55
    when 4 then 80
    when 5 then 55
    when 6 then 80)

redraw = (data, size) ->
    global.vis.selectAll('.hex')
        .data(data[0...size])
      .enter().append('path')
        .attr('class', 'hex')
        .attr('d', global.path_generator)
        .attr('fill', (d, i) ->
          return color(i)
        )
      .transition().duration(60)
        .each('end', (() ->
            if size > data.length
                return
            redraw(data, size+1)
        ))

index.css

.hex {
  stroke: black;
  stroke-width: 1;
}

index.sass

.hex
    stroke: black
    stroke-width: 1