block by nitaku 7141176

Gosper regions (quantitative)

Full Screen

An experiment with Gosper regions and quantitative data. A sequence of elements, each with its own quantitative variable, is sorted, then placed on the map following the Gosper curve. Quantization can then be changed without changing the elements’ position, yet still producing adjacent regions with a good aspect ratio.

If such a solution would fit a certain problem is anyone’s guess, but I think it could be of help if a ZUI is desirable (e.g. if users want to request details about a certain element or its neighborhood).

index.js

(function() {
  var fractalize, global, hex_coords, new_hex;

  global = {};

  /* compute a Lindenmayer system given an axiom, a number of steps and rules
  */

  fractalize = function(config) {
    var char, i, input, output, _i, _len, _ref;
    input = config.axiom;
    for (i = 0, _ref = config.steps; 0 <= _ref ? i < _ref : i > _ref; 0 <= _ref ? i++ : i--) {
      output = '';
      for (_i = 0, _len = input.length; _i < _len; _i++) {
        char = input[_i];
        if (char in config.rules) {
          output += config.rules[char];
        } else {
          output += char;
        }
      }
      input = output;
    }
    return output;
  };

  /* convert a Lindenmayer string into an array of hexagonal coordinates
  */

  hex_coords = function(config) {
    var char, current, dir, dir_i, directions, path, _i, _len, _ref;
    directions = [
      {
        x: +1,
        y: -1,
        z: 0
      }, {
        x: +1,
        y: 0,
        z: -1
      }, {
        x: 0,
        y: +1,
        z: -1
      }, {
        x: -1,
        y: +1,
        z: 0
      }, {
        x: -1,
        y: 0,
        z: +1
      }, {
        x: 0,
        y: -1,
        z: +1
      }
    ];
    /* start the walk from the origin cell, facing east
    */
    path = [
      {
        x: 0,
        y: 0,
        z: 0
      }
    ];
    dir_i = 0;
    _ref = config.fractal;
    for (_i = 0, _len = _ref.length; _i < _len; _i++) {
      char = _ref[_i];
      if (char === '+') {
        dir_i = (dir_i + 1) % directions.length;
      } else if (char === '-') {
        dir_i = dir_i - 1;
        if (dir_i === -1) dir_i = 5;
      } else if (char === 'F') {
        dir = directions[dir_i];
        current = path[path.length - 1];
        path.push({
          x: current.x + dir.x,
          y: current.y + dir.y,
          z: current.z + dir.z
        });
      }
    }
    return path;
  };

  window.main = function() {
    var coords, dx, dy, e, gosper, height, hexes, i, path_generator, radius, seq, svg, width;
    width = 960;
    height = 500;
    svg = d3.select('body').append('svg').attr('width', width).attr('height', height);
    global.vis = svg.append('g').attr('transform', 'translate(540,10)');
    /* create the input sequence (random length between 1000 and 2401)
    */
    /* give the element a random value (random choice between uniform and triangular distribution)
    */
    seq = (function() {
      var _ref, _results;
      _results = [];
      for (i = 0, _ref = 1000 + Math.floor(Math.random() * 1401); 0 <= _ref ? i <= _ref : i >= _ref; 0 <= _ref ? i++ : i--) {
        _results.push(Math.random() > 0.5 ? Math.random() : (Math.random() + Math.random()) / 2);
      }
      return _results;
    })();
    /* sort the sequence by value
    */
    seq.sort();
    /* create the Gosper curve
    */
    gosper = fractalize({
      axiom: 'A',
      steps: 4,
      rules: {
        A: 'A+BF++BF-FA--FAFA-BF+',
        B: '-FA+BFBF++BF+FA--FA-B'
      }
    });
    /* convert the curve into coordinates of hex cells
    */
    coords = hex_coords({
      fractal: gosper
    });
    /* create the GeoJSON hexes
    */
    hexes = {
      type: 'FeatureCollection',
      features: (function() {
        var _len, _results;
        _results = [];
        for (i = 0, _len = seq.length; i < _len; i++) {
          e = seq[i];
          _results.push(new_hex(coords[i], e));
        }
        return _results;
      })()
    };
    /* custom projection to make hexagons appear regular (y axis is also flipped)
    */
    radius = 5;
    dx = radius * 2 * Math.sin(Math.PI / 3);
    dy = radius * 1.5;
    path_generator = d3.geo.path().projection(d3.geo.transform({
      point: function(x, y) {
        return this.stream.point(x * dx / 2, -(y - (2 - (y & 1)) / 3) * dy / 2);
      }
    }));
    /* draw the cells
    */
    global.vis.selectAll('.hex').data(hexes.features).enter().append('path').attr('class', 'hex').attr('d', path_generator).append('title');
    recolor(false);
    return document.getElementById('default').focus();
  };

  /* color the cells according to the selected quantization
  */

  window.recolor = function(quantization) {
    /* define a quantize scale
    */
    var colorify, perc, quantize;
    if (quantization !== false) {
      quantize = d3.scale.quantize().domain([0, 1]).range(d3.range(0, 1, 1.0 / quantization));
    } else {
      quantize = function(x) {
        return x;
      };
    }
    /* define a linear color scale
    */
    colorify = d3.scale.linear().domain([0, 1]).range(['rgb(247,251,255)', 'rgb(8,48,107)']).interpolate(d3.interpolateHcl);
    /* define a percentage format
    */
    perc = d3.format('.4p');
    return global.vis.selectAll('.hex').attr('fill', function(d) {
      return colorify(quantize(d.properties['value']));
    }).attr('stroke', function(d) {
      return colorify(quantize(d.properties['value']));
    }).select('title').text(function(d) {
      return "" + (perc(d.properties['value'])) + " > " + (perc(quantize(d.properties['value'])));
    });
  };

  /* create a new hexagon
  */

  new_hex = function(c, e) {
    /* conversion from hex coordinates to rect
    */
    var x, y;
    x = 2 * (c.x + c.z / 2.0);
    y = 2 * c.z;
    return {
      type: 'Feature',
      geometry: {
        type: 'Polygon',
        coordinates: [[[x, y + 2], [x + 1, y + 1], [x + 1, y], [x, y - 1], [x - 1, y], [x - 1, y + 1], [x, y + 2]]]
      },
      properties: {
        'value': e
      }
    };
  };

}).call(this);

index.html

<!DOCTYPE html>
<html>
    <head>
        <meta charset="utf-8">
        <title>Gosper Regions (quantitative data)</title>
        <link type="text/css" href="index.css" rel="stylesheet"/>
        <script src="//d3js.org/d3.v3.min.js"></script>
        <script src="index.js"></script>
    </head>
    <body onload="main()">
        <div id="buttons">
            <button id="default" onclick="recolor(false)">No quantization</button>
            <button onclick="recolor(9)">9 ranges</button>
            <button onclick="recolor(5)">5 ranges</button>
            <button onclick="recolor(3)">3 ranges</button>
        </div>
    </body>
</html>

index.coffee

global = {}

### compute a Lindenmayer system given an axiom, a number of steps and rules ###
fractalize = (config) ->
    input = config.axiom
    
    for i in [0...config.steps]
        output = ''
        
        for char in input
            if char of config.rules
                output += config.rules[char]
            else
                output += char
                
        input = output
        
    return output
    
### convert a Lindenmayer string into an array of hexagonal coordinates ###
hex_coords = (config) ->
    directions = [
        {x:+1, y:-1, z: 0},
        {x:+1, y: 0, z:-1},
        {x: 0, y:+1, z:-1},
        {x:-1, y:+1, z: 0},
        {x:-1, y: 0, z:+1},
        {x: 0, y:-1, z:+1}
    ]
    
    ### start the walk from the origin cell, facing east ###
    path = [{x:0,y:0,z:0}]
    dir_i = 0
    
    for char in config.fractal
        if char == '+'
            dir_i = (dir_i+1) % directions.length
        else if char == '-'
            dir_i = dir_i-1
            if dir_i == -1
                dir_i = 5
        else if char == 'F'
            dir = directions[dir_i]
            current = path[path.length-1]
            path.push {x:current.x+dir.x, y:current.y+dir.y, z:current.z+dir.z}
            
    return path

window.main = () ->
    width = 960
    height = 500
    
    svg = d3.select('body').append('svg')
        .attr('width', width)
        .attr('height', height)
        
    global.vis = svg.append('g')
        .attr('transform', 'translate(540,10)')
        
    ### create the input sequence (random length between 1000 and 2401) ###
    ### give the element a random value (random choice between uniform and triangular distribution) ###
    seq = ((if Math.random() > 0.5 then Math.random() else (Math.random()+Math.random())/2) for i in [0..1000+Math.floor(Math.random() * 1401)])
    
    ### sort the sequence by value ###
    seq.sort()
    
    ### create the Gosper curve ###
    gosper = fractalize
        axiom: 'A'
        steps: 4
        rules:
            A: 'A+BF++BF-FA--FAFA-BF+'
            B: '-FA+BFBF++BF+FA--FA-B'
            
    ### convert the curve into coordinates of hex cells ###
    coords = hex_coords
        fractal: gosper
        
    ### create the GeoJSON hexes ###
    hexes = {
        type: 'FeatureCollection',
        features: (new_hex(coords[i], e) for e, i in seq)
    }
    
    ### custom projection to make hexagons appear regular (y axis is also flipped) ###
    radius = 5
    dx = radius * 2 * Math.sin(Math.PI / 3)
    dy = radius * 1.5
    
    path_generator = d3.geo.path()
        .projection d3.geo.transform({
            point: (x,y) -> this.stream.point(x * dx / 2, -(y - (2 - (y & 1)) / 3) * dy / 2)
        })
        
    ### draw the cells ###
    global.vis.selectAll('.hex')
        .data(hexes.features)
      .enter().append('path')
        .attr('class', 'hex')
        .attr('d', path_generator)
      .append('title')
        
    recolor(false)
    document.getElementById('default').focus()
    
### color the cells according to the selected quantization ###
window.recolor = (quantization) ->
    ### define a quantize scale ###
    if quantization isnt false
        quantize = d3.scale.quantize()
            .domain([0, 1])
            .range(d3.range(0,1,1.0/quantization))
    else
        quantize = (x) -> x
        
    ### define a linear color scale ###
    colorify = d3.scale.linear()
        .domain([0, 1])
        .range(['rgb(247,251,255)','rgb(8,48,107)'])
        .interpolate(d3.interpolateHcl)
        
    ### define a percentage format ###
    perc = d3.format('.4p')
    
    global.vis.selectAll('.hex')
        .attr('fill', (d) -> colorify quantize d.properties['value'])
        .attr('stroke', (d) -> colorify quantize d.properties['value'])
      .select('title')
        .text((d) -> "#{perc d.properties['value']} > #{perc quantize d.properties['value']}")
        
### create a new hexagon ###
new_hex = (c, e) ->
    ### conversion from hex coordinates to rect ###
    x = 2*(c.x + c.z/2.0)
    y = 2*c.z
    
    return {
        type: 'Feature',
        geometry: {
            type: 'Polygon',
            coordinates: [[
                [x, y+2],
                [x+1, y+1],
                [x+1, y],
                [x, y-1],
                [x-1, y],
                [x-1, y+1],
                [x, y+2]
            ]]
        },
        properties: {
            'value': e
        }
    }
    

index.css

svg {
  background: lightgrey;
}

.hex {
  stroke-width: 1;
}
.hex:hover {
  fill: yellow;
}

#buttons {
  position: absolute;
  top: 16px;
  left: 16px;
}

button {
  border: 0;
  border-bottom: 2px solid #555555;
  height: 32px;
  border-radius: 3px;
  font-weight: bold;
  text-shadow: 0px -2px #555555;
  background: gray;
  color: #eeeeee;
  padding: 8px;
  box-shadow: 0 0 6px rgba(0, 0, 0, 0.4);
}
button:hover {
  background: #707070;
}

index.sass

svg
    background: lightgray
    
.hex
    stroke-width: 1
    &:hover
        fill: yellow

#buttons
    position: absolute
    top: 16px
    left: 16px
    
button
    border: 0
    border-bottom: 2px solid #555
    height: 32px
    border-radius: 3px
    font-weight: bold
    text-shadow: 0px -2px #555
    background: gray
    color: #EEE
    padding: 8px
    box-shadow: 0 0 6px rgba(0,0,0,0.4)
    
    &:hover
        background: #707070