block by timelyportfolio 4e7145fb4e7f0a01bfb4

forked https://gist.github.com/andrie/2a0ee5ac50c4d23906d2 to add more htmlwidgets

Full Screen

Forked this gist that contained Andrie de Vrie’ code from Creating network graphs using javascript directly from R. I thought it would be a good opportunity to explore some other network visualization htmlwidgets.

All the code is within this Gist for maximum reporducibility.

quick_comparison.Rmd

---
title: "CRAN Visualized with htmlwidgets - networkD3, DiagrammeR, visNetwork"
output: rmarkdown::html_vignette
---

In this [tweet](https://twitter.com/RevoAndrie/status/621346395929378817) announcing this [blog post](http://blog.revolutionanalytics.com/2015/07/creating-network-graphs-using-javascript-directly-from-r.html), Andrie de Vries @revoandrie visualized his UseR 2015 CRAN network talk with `networkD3`.

I thought it would be a good opportunity to show a couple more `htmlwidgets`.

## Get All the htmlwidgets

```{r}

library(igraph)

# devtools::install_github("chrisotphergandrud/networkD3")
library("networkD3")
# devtools::install_github("rich-iannone/DiagrammeR")
#  http://rich-iannone.github.io/DiagrammeR
library("DiagrammeR")
# devtools::install_github("dataknowledge/visNetwork")
#  http://dataknowledge.github.io/
library("visNetwork")
```

## Code from @revoandrie

This is all code directly from @revoandrie's [gist](https://gist.github.com/andrie/2a0ee5ac50c4d23906d2#file-networkd3-r).

```{r eval = F}
url <- "http://rawgit.com/andrie/cran-network-structure/master/pdb/depGraph-CRAN.rds"
datafile <- tempfile(fileext = ".rds")
download.file(url, destfile = datafile, mode = "wb")
gs <- readRDS(datafile)

# Remove all nodes with fewer than 50 edges
deg <- degree(gs, mode = "out")
idx <- names(which(deg > 50))
gn <- induced.subgraph(gs, idx)

# Extract into data frame and plot
gd <- get.data.frame(gn, what = "edges")
```

```{r echo = F}
gs <- readRDS("C:\\Users\\KENT~1.TLE\\AppData\\Local\\Temp\\RtmpGuoVnz\\file27a86e283e6a.rds")

# Remove all nodes with fewer than 50 edges
deg <- degree(gs, mode = "out")
idx <- names(which(deg > 50))
gn <- induced.subgraph(gs, idx)

# Extract into data frame and plot
gd <- get.data.frame(gn, what = "edges")
```


## networkD3

```{r}
simpleNetwork(gd, fontSize = 12, height = 600, width = "100%")  
```


I'll keep the code and customization to hopefully provide a fair comparison.


## DiagrammeR

[`DiagrammeR`](http://rich-iannone.github.io/DiagrammeR) gives us a couple different options, but the most interactive is `vivagraph`.


```{r}
library(htmltools)

# can handle igraph directly
vivagraph(gn,height = 600,width = "100%")
# can even use igraph layouts
vivagraph(gn, layout = layout.auto,height = 600,width = "100%")
```


## visNetwork

[`visNetwork`](http://dataknowledge.github.io/visNetwork/) in my opinion gives the most full-featured interactive network visualization currently.

```{r}
# use visNetwork

# get a size for our nodes
V(gn)$size <- degree(gn) * 10

gn %>%
  get.data.frame( what = "both" ) %>%
  {
    visNetwork(
      nodes = data.frame(
        id =  .[["vertices"]][,"name"]
        ,size =  .[["vertices"]][["size"]]
      )
      ,edges = .[["edges"]]
      ,height = 600
      ,width = "100%"
    )
  } %>%
  visOptions(highlightNearest = TRUE)
```