even more jgb yield with r and lattice.Rmd
## JGB Yields - Just a Couple More
See [the last post for all the details](). I just could not help creating a couple more.
```{r message = FALSE, warning = FALSE, error = FALSE, echo = FALSE }
opts_chunk$set(message = FALSE, warning = FALSE, error = FALSE, fig.width = 9, fig.height = 4, tidy.opts = list( width.cutoff = 50 ))
### Get and Transform the Data
#get Japan yield data from the Ministry of Finance Japan
#data goes back to 1974
require(xts)
#require(clickme)
require(latticeExtra)
url <- "http://www.mof.go.jp/english/jgbs/reference/interest_rate/"
filenames <- paste("jgbcme",c("","_2010","_2000-2009","_1990-1999","_1980-1989","_1974-1979"),".csv",sep="")
#load all data and combine into one jgb data.frame
jgb <- read.csv(paste(url,filenames[1],sep=""),stringsAsFactors=FALSE)
for (i in 2:length(filenames)) {
jgb <- rbind(jgb,read.csv(paste(url,"/historical/",filenames[i],sep=""),stringsAsFactors=FALSE))
}
#now clean up the jgb data.frame to make a jgb xts
jgb.xts <- as.xts(data.matrix(jgb[,2:NCOL(jgb)]),order.by=as.Date(jgb[,1]))
colnames(jgb.xts) <- paste0(gsub("X","JGB",colnames(jgb.xts)),"Y")
#get Yen from the Fed
#getSymbols("DEXJPUS",src="FRED")
xtsMelt <- function(data) {
require(reshape2)
#translate xts to time series to json with date and data
#for this behavior will be more generic than the original
#data will not be transformed, so template.rmd will be changed to reflect
#convert to data frame
data.df <- data.frame(cbind(format(index(data),"%Y-%m-%d"),coredata(data)))
colnames(data.df)[1] = "date"
data.melt <- melt(data.df,id.vars=1,stringsAsFactors=FALSE)
colnames(data.melt) <- c("date","indexname","value")
#remove periods from indexnames to prevent javascript confusion
#these . usually come from spaces in the colnames when melted
data.melt[,"indexname"] <- apply(matrix(data.melt[,"indexname"]),2,gsub,pattern="[.]",replacement="")
return(data.melt)
#return(df2json(na.omit(data.melt)))
}
jgb.melt <- xtsMelt(jgb.xts["2012::",])
jgb.melt$date <- as.Date(jgb.melt$date)
jgb.melt$value <- as.numeric(jgb.melt$value)
jgb.melt$indexname <- factor(
jgb.melt$indexname,
levels = colnames(jgb.xts)
)
```
### Variations on Favorite Plot - Time Series Line of JGB Yields by Maturity
```{r}
p2 <- xyplot(
value ~ date | indexname,
data = jgb.melt,
type = "l",
layout = c( length( unique( jgb.melt$indexname ) ), 1 ),
panel = function(x, y, ...) {
panel.abline( h = c( min( y ), max( y ) ) )
panel.xyplot( x = x, y = y, ... )
panel.text(
x = x[ length(x) / 2],
y = max( y ),
labels = levels(jgb.melt$indexname)[panel.number()],
cex = 0.7,
pos = 3
)
},
scales = list(
x = list( tck = c(1,0), alternating = 1 ),
y = list( tck = c(1,0), lwd = c(0,1) )
),
strip = FALSE,
par.settings = list(axis.line = list(col = 0)),
xlab = NULL,
ylab = "Yield",
main = "JGB Yields by Maturity Since Jan 2012"
)
p2 <- p2 + layer(
panel.abline(
h = pretty(jgb.melt$value),
lty = 3
)
)
p2
jgb.xts.diff <- jgb.xts["2012::",] - matrix(
rep(jgb.xts["2012::",][1,],NROW(jgb.xts["2012::",])),
ncol = NCOL(jgb.xts),
byrow = TRUE
)
jgb.diff.melt <- xtsMelt(jgb.xts.diff)
jgb.diff.melt$date <- as.Date(jgb.diff.melt$date)
jgb.diff.melt$value <- as.numeric(jgb.diff.melt$value)
jgb.diff.melt$indexname <- factor(
jgb.diff.melt$indexname,
levels = colnames(jgb.xts)
)
p4 <- xyplot(
value ~ date |indexname,
data= jgb.diff.melt,
type = "h")
update(p2, ylim = c(min(jgb.diff.melt$value), max(jgb.melt$value) + 0.5 ) ) +
p4
update(
p2,
ylim = c(min(jgb.diff.melt$value), max(jgb.melt$value) + 0.5 ),
par.settings = list(axis.line = list(col = "gray70"))
) +
update(
p4,
panel = function( x, y, col, ...) {
#do color scale from red(negative) to blue(positive)
cc.palette <- colorRampPalette(
c(brewer.pal("Reds", n=9) [7], "white", brewer.pal("Blues", n=9) [7])
)
cc.levpalette <- cc.palette(20)
cc.levels <- level.colors(
y,
at = do.breaks(c(-0.3,0.3),20),
col.regions = cc.levpalette
)
panel.xyplot(x = x, y = y, col = cc.levels, ...)
}
)
p5 <- horizonplot(
value ~ date |indexname,
data= jgb.diff.melt,
layout = c(1,length(unique(jgb.diff.melt$indexname))),
scales = list(
x = list( tck = c(1,0) )
),
xlab = NULL,
ylab = NULL
)
p5
update(
p2,
ylim = c(0, max(jgb.melt$value) + 0.5 ),
panel = panel.xyplot
) +
p5 +
update(
p2,
ylim = c(0, max(jgb.melt$value) )
)
```
### Variations on Yield Curve Evolution with Opacity Color Scale
```{r}
#add alpha to colors
addalpha <- function(alpha=180,cols) {
rgbcomp <- col2rgb(cols)
rgbcomp[4] <- alpha
return(rgb(rgbcomp[1],rgbcomp[2],rgbcomp[3],rgbcomp[4],maxColorValue=255))
}
p3 <- xyplot(
value~indexname, group=date,
data = jgb.melt,
type = "l",
lwd = 2,
col = sapply(
400/(as.numeric(Sys.Date() - jgb.melt$date) + 1),
FUN = addalpha,
cols = brewer.pal("Blues", n = 9)[7]
),
main = "JGB Yield Curve Evolution Since Jan 2012"
)
p3 <- update ( asTheEconomist(p3), scales = list ( x = list ( cex = .7 ) ) ) +
layer(
panel.text (
x = length(
levels ( jgb.melt$indexname )
),
y = 0.15,
label = "source: Japanese Ministry of Finance",
col = "gray70",
font = 3,
cex = 0.8,
adj = 1
)
)
#make point rather than line
update(p3, type ="p")
#make point with just most current curve as line
update(p3, type ="p") +
xyplot(
value ~ indexname,
data = jgb.melt[which( jgb.melt$date == max(jgb.melt$date) ), ],
type = "l",
col = brewer.pal("Blues", n = 9)[7]
)
```
### Replicate Me with [code at Gist](https://gist.github.com/timelyportfolio/5586468)