block by timelyportfolio 5586468

even more jgb yield charts with r and lattice

Full Screen

More JGB Yield Charts with R and Lattice

See the post

Replicate in r by downloading the .rmd and using knitr

even more jgb yield with r and lattice.Rmd

## JGB Yields - Just a Couple More

See [the last post for all the details]().  I just could not help creating a couple more.

```{r message = FALSE, warning = FALSE, error = FALSE, echo = FALSE }
opts_chunk$set(message = FALSE, warning = FALSE, error = FALSE, fig.width = 9, fig.height = 4, tidy.opts = list( width.cutoff = 50 ))

### Get and Transform the Data

#get Japan yield data from the Ministry of Finance Japan
#data goes back to 1974

require(xts)
#require(clickme)
require(latticeExtra)

url <- "http://www.mof.go.jp/english/jgbs/reference/interest_rate/"
filenames <- paste("jgbcme",c("","_2010","_2000-2009","_1990-1999","_1980-1989","_1974-1979"),".csv",sep="")

#load all data and combine into one jgb data.frame
jgb <- read.csv(paste(url,filenames[1],sep=""),stringsAsFactors=FALSE)
for (i in 2:length(filenames)) {
  jgb <- rbind(jgb,read.csv(paste(url,"/historical/",filenames[i],sep=""),stringsAsFactors=FALSE))
}

#now clean up the jgb data.frame to make a jgb xts
jgb.xts <- as.xts(data.matrix(jgb[,2:NCOL(jgb)]),order.by=as.Date(jgb[,1]))
colnames(jgb.xts) <- paste0(gsub("X","JGB",colnames(jgb.xts)),"Y")

#get Yen from the Fed
#getSymbols("DEXJPUS",src="FRED")

xtsMelt <- function(data) {
  require(reshape2)
  
  #translate xts to time series to json with date and data
  #for this behavior will be more generic than the original
  #data will not be transformed, so template.rmd will be changed to reflect
  
  
  #convert to data frame
  data.df <- data.frame(cbind(format(index(data),"%Y-%m-%d"),coredata(data)))
  colnames(data.df)[1] = "date"
  data.melt <- melt(data.df,id.vars=1,stringsAsFactors=FALSE)
  colnames(data.melt) <- c("date","indexname","value")
  #remove periods from indexnames to prevent javascript confusion
  #these . usually come from spaces in the colnames when melted
  data.melt[,"indexname"] <- apply(matrix(data.melt[,"indexname"]),2,gsub,pattern="[.]",replacement="")
  return(data.melt)
  #return(df2json(na.omit(data.melt)))
  
}

jgb.melt <- xtsMelt(jgb.xts["2012::",])
jgb.melt$date <- as.Date(jgb.melt$date)
jgb.melt$value <- as.numeric(jgb.melt$value)
jgb.melt$indexname <- factor(
  jgb.melt$indexname,
  levels = colnames(jgb.xts)
)
```

### Variations on Favorite Plot - Time Series Line of JGB Yields by Maturity
```{r}
p2 <- xyplot(
  value ~ date | indexname,
  data = jgb.melt,
  type = "l",
  layout = c( length( unique( jgb.melt$indexname ) ), 1 ),
  panel = function(x, y, ...) {
    panel.abline( h = c( min( y ), max( y ) ) )
    panel.xyplot( x = x, y = y, ... )
    panel.text(
      x = x[ length(x) / 2],
      y = max( y ),
      labels = levels(jgb.melt$indexname)[panel.number()],
      cex = 0.7,
      pos = 3
    )
  },
  scales = list( 
    x = list( tck = c(1,0), alternating = 1 ),
    y = list( tck = c(1,0), lwd = c(0,1) )
  ),
  strip = FALSE,
  par.settings = list(axis.line = list(col = 0)),
  xlab = NULL,
  ylab = "Yield",
  main = "JGB Yields by Maturity Since Jan 2012"
)
p2 <- p2 + layer(
  panel.abline(
    h = pretty(jgb.melt$value),
    lty = 3
  )
)
p2

jgb.xts.diff <- jgb.xts["2012::",] - matrix(
  rep(jgb.xts["2012::",][1,],NROW(jgb.xts["2012::",])),
  ncol = NCOL(jgb.xts),
  byrow = TRUE
)
jgb.diff.melt <- xtsMelt(jgb.xts.diff)
jgb.diff.melt$date <- as.Date(jgb.diff.melt$date)
jgb.diff.melt$value <- as.numeric(jgb.diff.melt$value)
jgb.diff.melt$indexname <- factor(
  jgb.diff.melt$indexname,
  levels = colnames(jgb.xts)
)
  
p4 <- xyplot(
  value ~ date |indexname,
  data= jgb.diff.melt,
  type = "h")

update(p2, ylim = c(min(jgb.diff.melt$value), max(jgb.melt$value) + 0.5 ) ) +
  p4

update(
  p2,
  ylim = c(min(jgb.diff.melt$value), max(jgb.melt$value) + 0.5 ),
  par.settings = list(axis.line = list(col = "gray70"))
) + 
update(
  p4,
  panel = function( x, y, col, ...) {
    #do color scale from red(negative) to blue(positive)
    cc.palette <- colorRampPalette(
      c(brewer.pal("Reds", n=9) [7], "white", brewer.pal("Blues", n=9) [7])
    )
    cc.levpalette <- cc.palette(20)
    cc.levels <- level.colors(
      y,
      at = do.breaks(c(-0.3,0.3),20),
      col.regions = cc.levpalette
    )
    panel.xyplot(x = x, y = y, col = cc.levels, ...)
  }
)


p5 <- horizonplot(
  value ~ date |indexname,
  data= jgb.diff.melt,
  layout = c(1,length(unique(jgb.diff.melt$indexname))),
  scales = list(
    x = list( tck = c(1,0) )
  ),
  xlab = NULL,
  ylab = NULL
)

p5

update(
  p2,
  ylim = c(0, max(jgb.melt$value) + 0.5 ),
  panel = panel.xyplot
) +
  p5 +
  update(
    p2,
    ylim = c(0, max(jgb.melt$value) )
  )

```

### Variations on Yield Curve Evolution with Opacity Color Scale
```{r}
#add alpha to colors
addalpha <- function(alpha=180,cols) {
  rgbcomp <- col2rgb(cols)
  rgbcomp[4] <- alpha
  return(rgb(rgbcomp[1],rgbcomp[2],rgbcomp[3],rgbcomp[4],maxColorValue=255))
}

p3 <- xyplot(
  value~indexname, group=date,
  data = jgb.melt,
  type = "l",
  lwd = 2,
  col = sapply(
    400/(as.numeric(Sys.Date() - jgb.melt$date) + 1),
    FUN = addalpha,
    cols = brewer.pal("Blues", n = 9)[7]
  ),
  main = "JGB Yield Curve Evolution Since Jan 2012"
)

p3 <- update ( asTheEconomist(p3), scales = list ( x = list ( cex = .7 ) ) ) +
  layer(
    panel.text (
      x = length(
        levels ( jgb.melt$indexname )
      ),
      y = 0.15,
      label = "source: Japanese Ministry of Finance",
      col = "gray70",
      font = 3,
      cex = 0.8,
      adj = 1
    )
  )

#make point rather than line
update(p3, type ="p")

#make point with just most current curve as line
update(p3, type ="p") +
  xyplot(
    value ~ indexname,
    data = jgb.melt[which( jgb.melt$date == max(jgb.melt$date) ), ],
    type = "l",
    col = brewer.pal("Blues", n = 9)[7]
  )  
 ```

### Replicate Me with [code at Gist](https://gist.github.com/timelyportfolio/5586468)